Don't Know (the Van Eck Sequence) - Numberphile

Поділитися
Вставка
  • Опубліковано 9 чер 2019
  • Neil Sloane on the Van Eck Sequence... Check out Brilliant (get 20% off their premium service): brilliant.org/numberphile (sponsor)
    More links & stuff in full description below ↓↓↓
    More Neil Sloane: bit.ly/Sloane_Numberphile
    Van Eck sequence on OEIS: oeis.org/A181391
    Afraid So is by Jeanne Marie Beaumont
    Numberphile is supported by the Mathematical Sciences Research Institute (MSRI): bit.ly/MSRINumberphile
    We are also supported by Science Sandbox, a Simons Foundation initiative dedicated to engaging everyone with the process of science. www.simonsfoundation.org/outr...
    And support from Math For America - www.mathforamerica.org/
    NUMBERPHILE
    Website: www.numberphile.com/
    Numberphile on Facebook: / numberphile
    Numberphile tweets: / numberphile
    Subscribe: bit.ly/Numberphile_Sub
    Videos by Brady Haran
    Editing and animation by Pete McPartlan
    Patreon: / numberphile
    Numberphile T-Shirts: teespring.com/stores/numberphile
    Brady's videos subreddit: / bradyharan
    Brady's latest videos across all channels: www.bradyharanblog.com/
    Sign up for (occasional) emails: eepurl.com/YdjL9
  • Наука та технологія

КОМЕНТАРІ • 868

  • @alexismandelias
    @alexismandelias 5 років тому +930

    Brady: what do we know about this sequence?
    Neil Sloane: nothing.
    Brady: great! Let's make a video about it!

    • @anawesomepet
      @anawesomepet 3 роки тому +11

      We know how to make it.

    • @official-obama
      @official-obama Рік тому +3

      Truttle1: what do we know about this programming language?
      ais523: nothing.
      Truttle1: great! Let's make a video about it!

    • @Yungmansgift215
      @Yungmansgift215 Рік тому +1

      ​@@anawesomepet But why outside of realizing it, (the sequence) do we need or use it?

    • @Triantalex
      @Triantalex 7 місяців тому

      ??

    • @quantumboss500yearsago2
      @quantumboss500yearsago2 Місяць тому +1

      ​@@official-obamaQuite rare finding a esolang enjoyer on random place

  • @robmckennie4203
    @robmckennie4203 5 років тому +308

    "boy, that's a really great sequence" my favourite kind of person

  • @JM-us3fr
    @JM-us3fr 5 років тому +488

    This man is a legend. I could listen to him talk about numbers forever

    • @shadowrottweiler
      @shadowrottweiler 5 років тому +3

      Definitely an enjoyable video!

    • @neissy
      @neissy 3 роки тому +1

      You mean professor Farnsworth???

    • @sillysausage4549
      @sillysausage4549 3 роки тому

      You mean guy who spouts the same boring sequence stuff all the time, all in a comedy accent?

    • @lawrencedoliveiro9104
      @lawrencedoliveiro9104 3 роки тому +4

      By “forever”, do you mean ℵ₀ seconds or something greater, like, say, ℵ₁ seconds?

    • @Triantalex
      @Triantalex 7 місяців тому

      false.

  • @DrMcCoy
    @DrMcCoy 5 років тому +699

    "Boy, that's a really great sequence!"

    • @geekjokes8458
      @geekjokes8458 5 років тому +74

      _better do math to it before anyone else_

    • @metallsnubben
      @metallsnubben 5 років тому +63

      that's a really great sequence you got there!
      be a shame if someone...
      *did* *math* *to* *it*

    • @mr.jellypie5637
      @mr.jellypie5637 5 років тому +1

      I know it is

    • @happypiano4810
      @happypiano4810 3 роки тому

      666 likes.

    • @namethe____7214
      @namethe____7214 8 місяців тому

      I saw this right when he said it

  • @gazorpalse5173
    @gazorpalse5173 5 років тому +61

    Ok, so after digging a little bit in the sequence, I wanted to share a bit of what I’ve found.
    I started having in mind to stop when the numbers from 1 to 10 would have appeared but it took me a bit longer than I thought. I finally got a bit further and got the first 252 numbers of the sequence.
    (I’ve done this on paper, no programming, so it’s possible I failed it at some point)
    Here are the 56 numbers that appeared in order : 0, 1, 2, 6, 5, 4, 3, 9, 14, 15, 17, 11, 8, 42, 20, 32, 18, 7, 31, 33, 56, 19, 37, 46, 23, 21, 25, 52, 13, 62, 40, 36, 16, 27, 10, 92, 51, 131, 39, 12, 44, 34, 97, 72, 41, 78, 24, 105, 107, 167, 61, 26, 22, 127, 28 and 29.
    One thing that I found funny with this sequence is that is has the tendency to quickly come back to a number that newly appeared. For exemple when the 9 shows up for the first time, it takes only 3 steps to appear again. Same for 7 and 31.
    5, 6, 18 are taking 5 steps to appear a 2nd time, 107 takes 28 steps, etc.
    But it doesn’t happen for every number, like for 14 that takes 131 steps to appear a 2nd time, but takes 4 steps to appear a 3rd time. ^^ 17 didn’t appear a second time for me even though it comes pretty early in the sequence.
    It’s hard to find coherence in there but it’s strange to see more often that not new numbers reappearing pretty quickly even though there are still lot of numbers that haven’t appeared yet.
    The second thing that surprise me a bit is the frequency of new numbers appearing, only takes about 4,5 steps (the longest chain of numbers between two 0s I’ve found is 8 numbers long (found it 2 times)) Thought it would take a bit longer but it’s pretty rare that a new number takes more than 6 steps to appear. But like I said, I only checked the 250 first numbers so I don’t know if it grows up, shrinks or stay pretty much the same if you go further and further.
    I usually don’t really dig into that kind of stuff, mostly I listen to the video and continue my way elsewhere, but this time my curiosity hasn’t been fulfilled enough, so here I am writing this :p
    It was worth the try.
    Thanks Numberphile o/

  • @julbarrier
    @julbarrier 5 років тому +1572

    "X to Z" mathematicians favourite drug

    • @rogerkearns8094
      @rogerkearns8094 5 років тому +127

      Not in the UK. There's not much of a market here for ecsta-zed.

    • @eve36368
      @eve36368 5 років тому +18

      @@rogerkearns8094 is this the reasoning behind zedd's name?

    • @Acalamity
      @Acalamity 5 років тому +1

      You are a better drug.

    • @davidgoffredo1738
      @davidgoffredo1738 5 років тому +17

      cursive Z, nonetheless. That's the strong stuff.

    • @Euquila
      @Euquila 5 років тому +19

      I once did x to zee and almost ended up zed

  • @hamfeldt93
    @hamfeldt93 5 років тому +868

    - Did you do anything fun this weekend?
    - Yeah
    - Yeah? What?
    - 5:42

  • @shinyeontae
    @shinyeontae 5 років тому +982

    Numberphile: Don't know
    Me: * Gets spooked *

  • @GravelLeft
    @GravelLeft 5 років тому +220

    I just realized that adding 0 as the next term when there's a number you haven't seen before, isn't as arbitrary as I first thought: It's really just in agreement with the rule of writing down "how far back it occurred last time". When it's never occurred before, the last time it occurred was _right now,_ zero steps ago, so we add a zero. Awesome :D

    • @chrisg3030
      @chrisg3030 5 років тому +4

      Nice logic isn't it? Does it mean that the sequence can only start with 0 and no other number? Also the rule seems to mean that 0 can only occur twice in succession at the beginning of the sequence or immediately after the first number n if n is allowed to be non-0.

    • @GravelLeft
      @GravelLeft 5 років тому +18

      @@chrisg3030 I don't see any reason you couldn't start with something else than 0. Then the sequence will be different depending on which number we start with. A funny thought: Since we don't know whether every number will eventually appear, let's say that m is a number that never appears in the sequence. Then if you start with m, only then will you get the same sequence as the one where you just start with 0 :D

    • @chrisg3030
      @chrisg3030 5 років тому +1

      Similarly there's no reason why you couldn't add something else, say 2, when there's a number you haven't seen before. So 0 2 2 1 2 2 1 3 2 3 2 2 1 6 ... The original rule says "Add n when the number last occurred n places back", so when it's new - that is last occurred 0 places back - you add 0. With my variant it's the same but with the exception of 0 places back, in which case you add 2 but still use 2 for 2 places back as well. We still seem to get the same kind of sequence though (except in the case of 1, if we add 1 for new as well as 1 place back we just get endless 1's). Please check.

    • @HuskyNET
      @HuskyNET 3 роки тому +3

      I immediately want to extend this to the negative and imaginary numbers

    • @Xonatron
      @Xonatron 3 роки тому

      This needs more up votes.

  • @colinstu
    @colinstu 5 років тому +217

    2:58 now that's some genuine enthusiasm, love it.

    • @Lyle-xc9pg
      @Lyle-xc9pg 5 років тому +4

      i was just thinking the same thing and looking for a comment about that. Warms my heart that people noticed

    • @colinstu
      @colinstu 5 років тому +1

      @@Lyle-xc9pg I felt tickled when he said it that way! Neil is the best

    • @Triantalex
      @Triantalex 7 місяців тому

      ??

    • @colinstu
      @colinstu 7 місяців тому

      @@Triantalex the “yeahhhhh… I think it’s lovely”. Really has some genuine expression to it.

  • @tylerowens
    @tylerowens 5 років тому +37

    One thing that can be proven about the sequence is that VE(n) < n for n > 0 (since the entire sequence has length n+1, the most number of moves back it could take is n, but VE(0)=0 and VE(1)=0, so you'll never go all the way back to VE(0) and thus VE(n) < n). So yeah, f(n) = n seems like a fairly good approximation of the growth of the sequence, but it is also an absolute upper bound on the sequence.

  • @smileyp4535
    @smileyp4535 5 років тому +573

    "oooh that's a really great sequince, let me analyze it before anyone else does" I'm gonna go with things only a mathematician would say for 500

    • @OrangeC7
      @OrangeC7 5 років тому +15

      Suddenly, Jeopardy.

    • @EtherDais
      @EtherDais 5 років тому +10

      Very farnsworth

    • @thehiddenninja3428
      @thehiddenninja3428 5 років тому +7

      Sequence*

    • @MegaPremios
      @MegaPremios 5 років тому +2

      This guy is so obsessed with weird series

    • @Lightning_Lance
      @Lightning_Lance 5 років тому +5

      I can relate. I wanted to analyze it myself before watching the rest of the video :)

  • @PopeGoliath
    @PopeGoliath 5 років тому +120

    This is my new favorite sequence. I love self-descriptive sequences.

    • @rewrose2838
      @rewrose2838 5 років тому +11

      Nice , same (they're kinda like storing information about themselves)

    • @EZCarnivore
      @EZCarnivore 5 років тому +1

      This is my new favorite sequence because it's interesting, and also because my last name is part of the name!

    • @chrisg3030
      @chrisg3030 5 років тому +2

      Reminds me of the Recaman sequence (Numberphile vid), also dependent on whether a number is new or not.

    • @chrisg3030
      @chrisg3030 5 років тому

      But isn't there a sense in which any sequence obeying a rule is self-referencing?
      Let's express the rule for the van Eck as "Add n when the current term last appears n places back". So if the current term is 1 and it last appeared 6 places back then we add 6. If the current term is 6 and it last appeared 0 places back (in other words it's never appeared before) we add 0.
      Now let's change that rule a tad: "Add n when the current term FIRST appears n places back". If we start with 0 we go on 0 1 0 3 0 5 0 7 0 9 0 11 ..., a both boringly regular and not apparently self referencing sequence, even though our defining rule makes sound like it should be.
      But in my example the first place of appearance of a term is never going to stop being just that, whereas the latest place of appearance of a van Eck term can change quite frequently. So perhaps we should talk instead of term-index variant and invariant sequences.

    • @PopeGoliath
      @PopeGoliath 5 років тому

      @@chrisg3030 i think the important distinction for a self-referential sequence" is when a series checks something other than the ordinality of a previous term. If you do something with the number other than use how big it is, it feels like using a meta-property of the sequence itself

  • @GalaxyGal-
    @GalaxyGal- 3 роки тому +7

    Dr Sloane has such a relaxing voice and his love for sequences just radiates from him.

  • @garethdean6382
    @garethdean6382 5 років тому +60

    'Oh come on! How can you not know how fast it grows? Surely that's easy to prove! We just... okay maybe we.... what if....'
    *Three hours later*
    'Alright, you win this round...'

    • @benjaminblack91
      @benjaminblack91 Місяць тому

      It does feel like there is a provable lower bound using the repeating argument described in the video. But it is probably super low, logarithmic in n or something.

  • @SunayH01
    @SunayH01 5 років тому +24

    Love Neil Sloane videos on Numberphile. Non convential maths at its very best.

  • @darealpoopster
    @darealpoopster 5 років тому +29

    I feel like this is another video which is going to inspire a person to “solve” this sequence.

  • @patrickgono6043
    @patrickgono6043 5 років тому +17

    I love these self-referencing number sequences. Reminds me of the Kolakoski sequence.

  • @lawrencecalablaster568
    @lawrencecalablaster568 5 років тому +153

    This is fascinating- it reminds me of John Conway's Look-&-Say Sequence.

    • @rewrose2838
      @rewrose2838 5 років тому +23

      The self describing sequence?
      Like 0 , 10 , 1110, 3110, ... ??

    • @chrisg3030
      @chrisg3030 5 років тому +1

      Reminds me of Recaman, self-descriptive and also depends on whether a number is new or not, except you can't use it if not.

    • @livedandletdie
      @livedandletdie 5 років тому +2

      However this sequence gets boring if you have the 2 starting numbers be 1,1.

    • @konstantinkh
      @konstantinkh 4 роки тому +7

      @@livedandletdie The second term is a lie, and we all know that you can derive anything from a false premise. :p

    • @nanamacapagal8342
      @nanamacapagal8342 4 роки тому

      Or how about the roman version, it starts like this
      I
      II
      III
      IIII
      IVI
      IIIVII
      IIIIIVIII
      VIIVIIII
      IVIIIIVIVI
      IIIVIVIIVIIIVII
      IIIIIVIIIVIIIIVIIIIIVIII
      VIVIIIIIVIVIIVVIIVIIII
      IVIIIVVIIVIIIVIIIIIVIIIIVIVI

  • @blauw67
    @blauw67 5 років тому +12

    This is brilliant, it's so simple to think up, yet it's not been submitted before and so unpredictable. I really enjoyed this sequence.

  • @AalbertTorsius
    @AalbertTorsius 5 років тому +298

    There's extra footage, right? _Please_ tell me there's extra footage.

    • @__gavin__
      @__gavin__ 5 років тому +25

      I know right. I was immediately checking the description for the bonus video.

    • @andrewolesen8773
      @andrewolesen8773 5 років тому +170

      dont know

    • @shoutz5872
      @shoutz5872 5 років тому +11

      Don't know ;)

    • @YsterYuki
      @YsterYuki 4 роки тому +10

      don't know 🤔

    • @whatisthis2809
      @whatisthis2809 3 роки тому +3

      dont know

  • @Jason_Kang
    @Jason_Kang 3 роки тому +31

    Anyone here from advent of code?

    • @petermarsh4578
      @petermarsh4578 3 роки тому +1

      Yes! I was hoping there's be clever ways to speed up generation of the sequence haha. Seems I'll be running it for a few more hours yet!

    • @CLundell
      @CLundell 3 роки тому

      @@petermarsh4578 There is a way to speed it up. Think about how you store your generated numbers and how you look them up.

    • @fahrenheit2101
      @fahrenheit2101 2 роки тому

      This one took me particularly long to work out. I can't actually remember how I managed it.

  • @jovi_al
    @jovi_al 4 роки тому +9

    I love it when Sloane is on the channel. His database inspired me to choose a maths major. I'm so excited for it!!

  • @ionymous6733
    @ionymous6733 5 років тому +6

    he always reminds me of Professor Farnsworth. I love it!

  • @Kaczankuku
    @Kaczankuku 5 років тому +24

    I would change the definition of Van Eck's sequence. The sequence doesn't begin from 0 necessarily. Then it is only 0-sequence but it can be N-sequence as well. Then the Van Eck's sequence family was created.

    • @woodfur00
      @woodfur00 5 років тому +9

      That's interesting, actually. They're related-if you start the sequence at n, it will look identical to the 0 sequence up to the first instance of n in the sequence, at which point it change completely. And the first different number will be much higher than anything around it, which could affect the shape of the large-scale triangle-my wild guess says its slope wouldn't change but its height would jump up at that point. Now I want to find out.

    • @woodfur00
      @woodfur00 5 років тому +7

      I did the graphing and I can't seem to find any patterns other than that initial outlier.

    • @glowstonelovepad9294
      @glowstonelovepad9294 2 роки тому +1

      1-sequence: 1 0 0 1 3 0 3 2 0 3 3 1 8 0 5 0 2 9 0 3 9 3 2 6 0 6 2 4 0 4 2 4 2 2 1 23 0 8 25 0 3 19 0 3 3 1 11 0...

  • @NoriMori1992
    @NoriMori1992 5 років тому +12

    Please keep us updated on this sequence, this is fascinating.

  • @nymalous3428
    @nymalous3428 5 років тому +6

    Sloane is so relaxing to listen to.

  • @filipsperl
    @filipsperl 5 років тому +25

    Would definitely like to see if there's any progress on this sequence

    • @noclafcz
      @noclafcz 5 років тому +17

      Don't know.

  • @faastex
    @faastex 5 років тому +6

    I love this sequence, everytime I think it's going to repeat itself it doesn't.

    • @kinyutaka
      @kinyutaka 5 років тому

      Seriously, I keep seeing repeated patterns in it, but they're always in different sections and separated.

  • @orthoplex64
    @orthoplex64 5 років тому +3

    I guess there will never be an end to learning about these number sequences that make me think "well I could have thought of that"

  • @adamengelhart5159
    @adamengelhart5159 3 роки тому +1

    So I saw the title and clicked on the video, and I just glanced at the description for maybe a few hundred milliseconds, and I saw OEIS mentioned, and I thought "oh, nice, they've got the Sloane's entry for it." Then I watched the video and realized that they've also got *Sloane.* :-D

  • @Calypso143
    @Calypso143 11 місяців тому +1

    I could listen to him listing the sequence like he did in the first minute for hours

  • @joshsvoss
    @joshsvoss 4 роки тому +1

    I love this guys enthusiasm.
    Explaining a sequence with a totally unrelated poem. Love it!!

  • @steveyankou4144
    @steveyankou4144 5 років тому +65

    the slope roughly equalling 1 is kinda blowing my mind.

    • @firstlast8858
      @firstlast8858 5 років тому +28

      Really shouldn't be that surprising. At any nth term x, x cannot be larger than n, because that would mean you would have to look back an amount of steps larger than the total amount of steps you have taken. Therefore, since the maximum value of x is equal to the value of n, drawing a line through all the peaks should give a line that approximately maps to y=x, or a slope of 1.

    • @simoncowell1029
      @simoncowell1029 5 років тому +31

      @@firstlast8858 Doesn't your argument show that the slope should be "less than or equal to 1", rather than "equal to 1" ?

    • @BainesMkII
      @BainesMkII 5 років тому +18

      @@firstlast8858 That's only half an argument. You've only explained why the slope cannot be above 1, not why it should be near 1. Indeed, since the sequence starts with 0, the maximum value of x is less than n. Further, it is easy to assume that x grows slower than n, so it isn't immediately evident that the slope would remain near 1.

    • @BobStein
      @BobStein 5 років тому +3

      @@BainesMkII Hmm, as soon as a number is "used" to look back to, it will never be used again. So eventually all the starting numbers must get "used" up. I wonder how fast the consecutive used-up numbers progresses right, because that could limit HOW MUCH less than 1 the slope is.

    • @kinyutaka
      @kinyutaka 5 років тому

      @@BobStein my guess, based on the first 173 numbers of the sequence is about 1/10

  • @robinlindgren6429
    @robinlindgren6429 5 років тому +4

    @7:06
    4 ways. specifically (+,+,+,+), (+,-,+,+), (-,+,-,-) (-,-,-,-)
    I found this by the following logic chain:
    1. 81 is already divisible by 3, therefore we only need to manipulate the pluses and minuses to preserve this property.
    2. 9 is also divisible by 3, therefore it doesn't matter if it is added or subtracted, it will not change the remainder after division by 3.
    3. 31, 13 and 4 are each numbers of the form 3x+1, therefore for the purposes of determining whether their sum will be divisible by 3, we need only concern ourselves with the '1' part.
    4. the only way to add or subtract 3 1s to each other in any combination and end up with a number that is divisible by 3 is if either all of them are subtracted (-1-1-1=-3) or all of them are added (1+1+1=3), therefore, the first, third and fourth sign must match each other.
    5. (4) combined with (2) implies that the second sign can be either plus or minus and the remaining ones must match each other but be either plus or minus and any such combination will work, this means we have 2*2=4 combinations

  • @thedenial
    @thedenial 5 років тому +224

    Neil: The obvious questions are…
    Me: What set of circumstance led to someone creating such an arbitrary set of rules.

    • @JorgetePanete
      @JorgetePanete 5 років тому +50

      Boredom, probably

    • @letao12
      @letao12 5 років тому +76

      Well, pretty much all of math arose from bored people creating arbitrary sets of rules, and then figuring out what they did.

    • @1996Pinocchio
      @1996Pinocchio 5 років тому +27

      Creativity, folks.

    • @JasperJanssen
      @JasperJanssen 5 років тому +29

      Someone looking for an interesting sequence to submit to the number sequence encyclopedia.

    • @Euquila
      @Euquila 5 років тому +6

      @@letao12 the rules might be arbitrary but the relationships enable spaceflight

  • @numbers93
    @numbers93 5 років тому +3

    MOAR OF THIS GUY PLS

  • @RebirthFlame
    @RebirthFlame 5 років тому +4

    This guy is great. Love his enthusiasm.

  • @noomwyn7919
    @noomwyn7919 5 років тому +1

    I have watched this video a few times now and absolutely enjoy this video! This is now one of my favorite sequences, it's so delightful! 😀

  • @johubify
    @johubify 5 років тому +4

    This channel is the channel which aided me to do very well in Mathematics, and is the channel responsible for my uprising interest in this subject!

  • @vitorbortolin6810
    @vitorbortolin6810 5 років тому +3

    Listen to this sequence in the library, it is amazing.

  • @GermaphobeMusic
    @GermaphobeMusic 5 років тому +110

    2:40 when your crush sends you their bionicle collection

    • @bengineer8
      @bengineer8 5 років тому +9

      I miss bionicle

    • @shadowbane7401
      @shadowbane7401 5 років тому +1

      Lunar arithmetic*

    • @takonyka
      @takonyka 5 років тому +1

      damn we are evrywhere. all hail bonkles

  • @toyodathon08
    @toyodathon08 5 років тому +1

    Love this guy’s explanations

  • @italyspotlighter7361
    @italyspotlighter7361 4 роки тому

    Another great video. Thanks for producing this extremely engaging material.

  • @xaviercombelle4316
    @xaviercombelle4316 5 років тому +4

    I love you neil sloane for oeis, it is very handy for an amateurish mathematician like me

  • @srinjoy.bhuiya
    @srinjoy.bhuiya 5 років тому +3

    Numberphile is my favourite channel

  • @feliciabarker9210
    @feliciabarker9210 5 років тому +4

    I could sit and watch an animation showing each number getting added and counting the spaces back for ages, it's hypnotic and pleasing

  • @Sam_on_YouTube
    @Sam_on_YouTube 5 років тому +4

    Answer to the daily challenge problem:
    4. It is a modular arithmetic question. 81 is divisible by 3 and so is 9. The other numbers each are divisible by 3 with a remainder of 1. All three of those must have either a plus or minus sign. But it must be the same sign for all three. Then thr nine can take a plus or minus and it is independent of the other one. So you have 2 independent choices with 2 options each. 2x2=4.

  • @superdookie4858
    @superdookie4858 5 років тому +7

    Bless this man

  • @2Cerealbox
    @2Cerealbox 5 років тому

    There is something so calming about the way he basks in these sequences.

  • @Abdega
    @Abdega 5 років тому +5

    2:15 accidental poetry by Neil Sloane

  • @SaveSoilSaveSoil
    @SaveSoilSaveSoil 3 роки тому

    Fascinating! I have never seen anything quite like this before!

  • @6infinity8
    @6infinity8 3 роки тому +9

    Hello advent of code folks :)

  • @TemplerOO7
    @TemplerOO7 5 років тому +5

    This series is amazing. Not intuitive, sort of alternating and unsolved. Reminds me of the 3n+1 problem, but in a more interesting and (probably also easier to solve) way

  • @howardgreen9718
    @howardgreen9718 5 років тому

    Another great video enhanced by your very effective animations 👍

  • @oneMeVz
    @oneMeVz 5 років тому +1

    Definitely want to see more on this sequence

  • @Pattonator14
    @Pattonator14 3 роки тому

    this is a super cool sequence, I hope one day someone else wants to talk to this channel about discoveries made about it!

  • @mathematicalmatt
    @mathematicalmatt 5 років тому +5

    I saw “sequence” and knew it would be Neil!

  • @StephenMoreira
    @StephenMoreira 5 років тому

    I agree very fun sequence. Great upload.

  • @thomasuilliamaro2542
    @thomasuilliamaro2542 5 років тому

    Just saw this pop up on the feed. Nice watch

  • @LaGuerre19
    @LaGuerre19 5 років тому +11

    Neil Sloane is the piper at the gates of dawn.

  • @eStalker42
    @eStalker42 5 років тому

    just awesome sequence!!

  • @johubify
    @johubify 5 років тому

    Yay, New video!

  • @manuc.260
    @manuc.260 5 років тому +11

    I'm going to answer on a new comment, cause I find the answer interesting by itself, to someone who remarked that if the sequence started with 1,1,... then the sequence would be periodic. The statement is true, but with this set of rules, the first number determines the sequence, and 1,1 is not a valid start for a sequence. In other words, all sequences generated with this rule start by x,0,... . However, we can actually verify that there are at least 2 such sequences that are "profoundly" different (i.e. one is not a subsequence of the other): 0,0,1,0,2,0,2,2,1,... and 1,0,0,1,3,0,3,2,0,3,3,1,8,0,... ("0,0" is a subsequence that appears exactly once on each sequence).
    A "not profoundly different" sequence would be: -1,0,0,1,0,2,... , if we allow for x to be a negative integer.
    With this I just realized that if 0,0,... does take all the positive integer values, then it might be "easy" to prove that x,0,... is a "profoundly different" sequence from y,0,... iff x!=y and both are natural numbers. Looking at it in the other way, if there's a value z that's not part of the sequence 0,0,... , then z,0,... is not "profoundly different" from 0,0,... .

    • @blahsomethingclever
      @blahsomethingclever 5 років тому +1

      Agreed.
      There are some more interesting sequences with modified rules:
      Add 1 to any new number. Subtract 1 from the number following a zero. That sequence looks just .. loopy. Very interesting.

    • @Ashebrethafe
      @Ashebrethafe 5 років тому +2

      This looked wrong at first -- then I realized that x!=y was supposed to be "x is not equal to y", not "x factorial is equal to y".

    • @JNCressey
      @JNCressey 5 років тому

      @@Ashebrethafe, haha... "factorial".
      Funny how programmers have managed to decide on ways to type 'not equal' and understand eachother eg '!=', 'neq', '>

    • @manuc.260
      @manuc.260 5 років тому +1


      eq is the true way to write not equal for mathematicians

    • @oisyn
      @oisyn 5 років тому +1

      @@JNCressey I just use a custom keyboard layout that allows me to type symbols like ≠ ;)

  • @Ivan_1791
    @Ivan_1791 4 роки тому

    Geez, I love these videos.

  • @davidgoffredo1738
    @davidgoffredo1738 5 років тому

    MOAR NEIL

  • @hunlem
    @hunlem 5 років тому +3

    This was a fun programming challenge. Created an algorithm to compute n values in linear time!

  • @dirt616
    @dirt616 5 років тому

    Intriguing! Had to write a function in excel for the Van Eck sequence, it sure was fun!

  • @lukask1800
    @lukask1800 5 років тому +1

    we want more of neil!

  • @zmaj12321
    @zmaj12321 5 років тому +3

    Brilliant question:
    Mod 3, the question is:
    0 ( ) 1 ( ) 0 ( ) 1 ( ) 1
    Where ( ) should be + or -.
    The maximum value of the expression is 3 and the minimum is -3, occurring when all the signs are + and - respectively (except for the sign before the 0, which can be either). This yields 2×2=4 possibilities. 0 cannot be achieved since the parity of the expression must be odd.

  • @CrashDy
    @CrashDy 5 років тому

    I love simplicity of this sequence.

  • @rc6431
    @rc6431 4 роки тому

    This man is an excellent teller.

  • @pcfilho425
    @pcfilho425 5 років тому +3

    One day I will post a sequence to the OEIS, and Neil Sloane will comment it in Numberphile, and I will be so proud of it. :)

  • @InviDoll
    @InviDoll 5 років тому

    The animation at 2:47 is pure magic. Also, YES, love this guy.

  • @MrXerios
    @MrXerios 3 роки тому

    That is a great sequence.

  • @Pete-Logos
    @Pete-Logos 5 років тому +11

    Love the sequence,
    Love the proof,
    Love the Pink Floyd shirt!!

  • @Gunbudder
    @Gunbudder 3 роки тому

    Neil Sloan playlist!

  • @jmasterX
    @jmasterX 5 років тому +1

    Amazing!!!!!!

  • @Kleinnnn
    @Kleinnnn 2 роки тому

    so lovely

  • @nab-rk4ob
    @nab-rk4ob 5 років тому

    That is such a poetic sequence.

  • @senseidei
    @senseidei 5 років тому

    Neil's back!

  • @Chrieso
    @Chrieso 5 років тому

    Awesome!

  • @chipblock2854
    @chipblock2854 4 роки тому

    I love numbers and how they relate with each other. I never heard of this. Has anyone ever programmed a computer to see how far you can go?
    What I am fond of saying is, "The more I learn, the less I don't know!" (Or realize I don't know.)

  • @lucbourhis3142
    @lucbourhis3142 5 років тому

    Lovely!

  • @itaymer
    @itaymer 2 роки тому

    Brilliant sequence

  • @jishnusen5088
    @jishnusen5088 5 років тому

    mind blowing sequence !!! I think it will be very interesting to study the number of zeros in the first "n" terms of the sequence because that is the only number which we can say surely occur or the longest interval in which no zeroes will be there.

  • @andymcl92
    @andymcl92 5 років тому +90

    Sequence:
    Boring, boring, boring, ohmygoodnesswhathappenedthere

  • @kanynmaloney2180
    @kanynmaloney2180 5 років тому

    I wish I had as much enthusiasm as this guy explaining math

  • @rikschaaf
    @rikschaaf 5 років тому +1

    We also know that the nth number cant be larger than n, because there arent more than n steps before n. Therefore the fastest way for the sequence to grow is linearly. it could still be root of n or log n, but n^2 or 2^n are ruled out.

  • @AH-nz3gm
    @AH-nz3gm 5 років тому +78

    He's wearing a Pink Floyd shirt! One more reason he's a badass.

    • @InzaneFlippers
      @InzaneFlippers 5 років тому +5

      hahah he wore a jimi hendrix shirt in another episode! a true beast

    • @StefanReich
      @StefanReich 5 років тому

      You worship the establishment too much

    • @AH-nz3gm
      @AH-nz3gm 5 років тому

      ​@@StefanReich You worship my root chakra too much

    • @Albimar17
      @Albimar17 5 років тому

      3:51 for a DSOTM T-shirt. What a legend Neil Sloane is

    • @shadowbane7401
      @shadowbane7401 5 років тому

      @@InzaneFlippers my favorite

  • @TheAlps36
    @TheAlps36 5 років тому +13

    Van Eck: You know nothing, Neil Sloane XD

    • @oz_jones
      @oz_jones 5 років тому +4

      Adrian Pietkiewicz Neil: afraid so :(

    • @galgrunfeld9954
      @galgrunfeld9954 5 років тому +3

      It's 1:17 AM me right now. Some might say that this video was my night's watch.

    • @kindlin
      @kindlin 5 років тому +2

      @@galgrunfeld9954
      I couldn't Clegane on it fast enough.

  • @djvampire1443
    @djvampire1443 4 роки тому

    me clicking on a video about sequences: :)
    Me seeing its neil sloane: :D
    I just admire him so much!

  • @4trym
    @4trym 5 років тому

    He's the best!

  • @BomberTVx
    @BomberTVx 4 роки тому +2

    About the demonstration "there might be some z's in the middle" and after thag absumption proving a contradiction seems weak, why add a z inside which is the same the last number of the period, and instead not take x directly (or z and then the a is x)

  • @CasualGraph
    @CasualGraph 5 років тому

    7:02 Interesting question, I'm thinking 4?
    31 mod 3 = 13 mod 3 = 4 mod 3 = 1
    and
    81 mod 3 = 9 mod 3 = 0
    so if the result is divisible by 3 (ie. result mod 3 = 0) the signs in front of 31, 13, & 4 can be + or - but they must match. Then the sign in front of 9 can then be + or - so that makes 2*2=4 combinations.

  • @shanmukhch
    @shanmukhch 3 роки тому +11

    AOC 2020 day15.

  • @patrik5123
    @patrik5123 5 років тому

    Surprisingly interesting.

  • @sin3divcx
    @sin3divcx 5 років тому +1

    Ohh gosh, that's an amazing sequence!And there are lots of questions rising:
    Does the sequence has infinite non zero terms? how often does each term appear? Does each positive integer appear in there? Can we find an algebraic expression for it? In order to find the n-th term, do we really need to know all the previous terms?
    So many questions, i love it!

  • @TheRedCyndaquil
    @TheRedCyndaquil 5 років тому

    Neil makes me smile

  • @johnsmall5901
    @johnsmall5901 5 років тому +1

    I feel that this sequence and its name could be made into a book in the writing style of Dr.Seuss.

    • @johnsmall5901
      @johnsmall5901 5 років тому +1

      We have seen a zero before.
      We saw it one minute ago!
      And when you've seen the number before,
      the next term is how far back you saw it, y'know?