While a read query in the proposed system is returning from the single pool, and listeners doing read repair in the background, won't the system return inconsistent data, as it is returning the value read from the single pool ?
I'm just referring to corba. From what I understand, Plan 9 Filesystem Protocol ( en.wikipedia.org/wiki/9P_(protocol) ) was already, promised less and had working impelmentation. Rob Pike still hopes for a successful follow-up ( ua-cam.com/video/ENLWEfi0Tkg/v-deo.html ).
An element e is idempotent iff e*e = e (for some operation *). In this case you only need 1 U 1 = 1 for it to be idempotent. You're thinking of the function f : Set -> Set, f(s) = s U 1. To prove that f is idempotent you need to check that f o f = f, which is the same as f(f(s)) = f(s) for all s, which is the same as s U 1 U 1 = s U 1, which is what you're saying.
Interesting like any talk given by Peter A question (that won’t never be answered here) as a user in my stream how do I get the aggregated data for all artists across all partitions ? And how do they deal with pagination and so on ?
Great talk for anyone interested in CAP, ACID, CRDTs, and distributed databases/systems in general.
My two cents, CRDTs give you causal consistency which is much more powerful than eventual consistency.
excellent talk
While a read query in the proposed system is returning from the single pool, and listeners doing read repair in the background, won't the system return inconsistent data, as it is returning the value read from the single pool ?
I'm just referring to corba.
From what I understand, Plan 9 Filesystem Protocol ( en.wikipedia.org/wiki/9P_(protocol) ) was already, promised less and had working impelmentation. Rob Pike still hopes for a successful follow-up ( ua-cam.com/video/ENLWEfi0Tkg/v-deo.html ).
regarding "ACID 2.0". The argument is correct but the slides are flawed.
It's not because 1U1=1 that it's Idempotent.
It's because 1U1U1=1 too.
+Peter Mogensen 1U1=1 => (1U1)U1=1
@@zantrua 1U2U2={1,2} is also necessary for idempotence, but does not follow from 1U2={1,2}
@@ruslanfadeev3113 It does follow from the rule stated though:
2U2=2
1U2={1,2}
1U(2U2)={1,2} (replacement 2=2U2)
An element e is idempotent iff e*e = e (for some operation *). In this case you only need 1 U 1 = 1 for it to be idempotent. You're thinking of the function f : Set -> Set, f(s) = s U 1. To prove that f is idempotent you need to check that f o f = f, which is the same as f(f(s)) = f(s) for all s, which is the same as s U 1 U 1 = s U 1, which is what you're saying.
Interesting like any talk given by Peter
A question (that won’t never be answered here) as a user in my stream how do I get the aggregated data for all artists across all partitions ? And how do they deal with pagination and so on ?