Worked example: Rewriting definite integral as limit of Riemann sum | AP Calculus AB | Khan Academy

Поділитися
Вставка
  • Опубліковано 2 січ 2025

КОМЕНТАРІ • 23

  • @docsuhas
    @docsuhas 2 роки тому +16

    Would be helpful to further clarify the difference between I , n and x , why use these different variables.

    • @Nate-jx7fi
      @Nate-jx7fi 3 місяці тому +1

      dawg if you cant understand that you have not gotten far enough in math to learn these

    • @trunklemcjeans
      @trunklemcjeans 2 місяці тому

      @@Nate-jx7fithat doesn’t even make sense dawg. You’re never too far into ignorance to learn more. Tf is this other than “im better at math than you” on a learning channel

  • @Pancake833
    @Pancake833 7 років тому +6

    Beautiful!

    • @ShenoyKitchen
      @ShenoyKitchen 7 років тому

      Evil MrMuffinz u liked ur own comment👀👀

  • @abhishekkulkarni7599
    @abhishekkulkarni7599 5 років тому +12

    how to solve that limit then..??

    • @anthonyalvaro8828
      @anthonyalvaro8828 3 роки тому

      The limit is solved by taking the integral

    • @dextroussafe8664
      @dextroussafe8664 2 роки тому

      The guy above didn't answer your question. Sal earlier in this video said that the areas would "cancel" out. This makes sense when you put in very large numbers for n in the limit, you will see that the area will approach zero.

    • @mysteriousdude4549
      @mysteriousdude4549 2 роки тому

      You have to factor out the i and then use some formulas to solve the summations then evaluate the limits

  • @Siggfuggggg2000
    @Siggfuggggg2000 7 років тому +4

    How do you know whether to write it as a right or left reimann sum

    • @Siggfuggggg2000
      @Siggfuggggg2000 6 років тому +1

      Paul Shin too late pal already had the test but thanks anyway

    • @benchnaldo655
      @benchnaldo655 Рік тому

      wait can you tell me how to know which one it is?

  • @ShenoyKitchen
    @ShenoyKitchen 7 років тому +1

    u r epic

  • @gerhardknauer05
    @gerhardknauer05 11 місяців тому +1

    I think I love you

  • @Mistiigolden
    @Mistiigolden Рік тому +1

  • @Hobbit183
    @Hobbit183 7 років тому +1

    Cool :)

  • @Xponent-nb3he
    @Xponent-nb3he 5 місяців тому

    me want obtain that handwriting good looking very

  • @muhalicelk
    @muhalicelk 2 роки тому

    /cc

  • @coolm0di
    @coolm0di 7 років тому +1

    shouldnt that "n" be "i" ?

    • @monku1521
      @monku1521 7 років тому

      shhhhhhhhhhh lol

    • @coolm0di
      @coolm0di 7 років тому +3

      hmmm that is not helping anyone.

    • @kurtmatteson4914
      @kurtmatteson4914 5 років тому

      "Pi/n" is equal to "i". I thought he would've written pi plus i.

    • @Mistiigolden
      @Mistiigolden Рік тому +4

      I am 5 years late, and you are probably not in calculus anymore. You are correct, the "n" he wrote should be an "i". "i" is x at some end point on a rectangle, and "n" is the number of rectangles, which is infinite. to reach endpoint "i", you must add "i" pi/ns to pi, the starting point of the integral.