What is dbt Data Build Tool? | What problem does it solve? | Practical use cases

Поділитися
Вставка
  • Опубліковано 1 гру 2024

КОМЕНТАРІ • 38

  • @ianwashere12345
    @ianwashere12345 10 місяців тому +2

    once you get them into the data warehouse, you can run a set of sprocs to cleanup/transform the data. don't understand yet why this is any better than just a few sql queries. I am not being negative, I really appreciate the talk.

    • @mastering_snowflake
      @mastering_snowflake  10 місяців тому

      Yep you absolutely can do this. However, dbt adds many additional benefits, right integration with source control for CI/CD, automated testing and documentation, dependency management between jobs is taken care for you as part of orchestration to name a few benefits.
      It comes down to your specific requirements and what you need to achieve really, it’s never black and white.

  • @VijayGandhi-mj3vr
    @VijayGandhi-mj3vr Рік тому +10

    Love the approach of using whiteboard and marker! Thanks for the simple yet effective intro :)

  • @danielperaza1514
    @danielperaza1514 9 місяців тому +1

    The value that you are providing is just ridiculous. Thanks for the straightforward explanation Adam

  • @alessandroparma4006
    @alessandroparma4006 2 роки тому +9

    CD stands for Continuous Delivery or Continuous Deployment, not Development

  • @daniamaya
    @daniamaya Рік тому +1

    wow! Plain and simple, just as valuable knowledge should be. Thanks!

  • @dzmitrybelash
    @dzmitrybelash Рік тому

    Very good and consistent intro to the dbt topic, thanks!

  • @Anki_doodle
    @Anki_doodle Рік тому +2

    your video was exactly what i was looking for. Amazing job Adam :)

  • @sheenanasim
    @sheenanasim Рік тому

    why couldn't I find this channel earlier? amazing explanations! 10 mins into the video and I am a fan.

  • @agermoune
    @agermoune 2 роки тому +4

    You’re giving us data breaking news in a such an absorbed way. Thanks!

  • @damilareabolaji9128
    @damilareabolaji9128 Рік тому

    I love the way you laid this all out.

  • @SamridhyaMoitra
    @SamridhyaMoitra 4 місяці тому

    Thanks a lot. I understood it well. Very well explained!

  • @chipile
    @chipile 7 місяців тому

    Great explanation! you won a suscriber, thanks for the content!

  • @Navinneroth
    @Navinneroth 2 роки тому +1

    Thanks Adam, Simple yet good insights on DBT. Look forward for more on this.

  • @dume0784
    @dume0784 2 роки тому +2

    Very useful introduction.. Thanks!

  • @dataarq945
    @dataarq945 2 роки тому +1

    Thanks Adam. Good introduction to DBT

  • @roberbonox
    @roberbonox Рік тому +1

    dude how r you, i have the next question, what could i do if i have a stream on snowflake that i want to "consume" in dbt but not creating a physical table or view, instead something live a ephemeral materialization, only to purge the stream and avoid to become stale. I create an ephemeral model and select the stream source but that only create obviously an ephemeral materialization but kind not clean the data on the stream, thoughts??

  • @emonymph6911
    @emonymph6911 8 місяців тому

    I"m confused is DBT just a query builder?
    If I use raw SQL in my webapp instead of an ORM. Where would DBT fit in? Would DBT be used to switch from raw SQL queries when fetching my data variables e.g. sql_data_python_object = raw_sql_query(against existing DB). So instead of raw_sql_query I would now write a dbt_query? But the benefit is that this query works on more DBs than say a raw pg query.
    So is DBT a query builder which works like an ORM in the sense that you can use the query on any DB? If not I don't see the purpose for it when I could just use a raw SQL query on the datawarehouse after the pipeline has finished filling up the datawarehouse.

    • @mastering_snowflake
      @mastering_snowflake  8 місяців тому

      A query builder is a fraction of what it can do.
      It has tight integration with version control which opens the door to DataOps and CI/CD.
      You have a range of different materializations which can be switched in an instant using a configuration parameter across a database schema or even individual objects.
      You can automate testing and leverage out of the box standard tests easily as well as creating your own custom tests.
      Job dependencies and orchestration is automatically handled for you, along with the flexibility of which models you wish to build, run or test.
      On top of that, you’ve got automated documentation, which can be generated using the single command.
      I’m sure there’s more but that’s just off the top of my head.

  • @sridhary4571
    @sridhary4571 Рік тому +1

    Thanks Adam, it's useful and informative, I have one doubt, on Snowflake also we can do transformations, what is the reason to opt for DBT, thank you,

    • @mastering_snowflake
      @mastering_snowflake  Рік тому

      Thanks for your question!
      Off the top of my head - orchestration between models is taken care of, auto documentation generation, versioning of code with tight integration to bitbucket or GitHub, ease of applying different kinds of materializations

    • @sridhary4571
      @sridhary4571 Рік тому

      ​@@mastering_snowflake thanks for the clarification❤,

  • @isinpresshenning
    @isinpresshenning Рік тому +1

    Cloud data platforms are not the reasons why data teams started to do ELT instead of ETL. ELT has been performed by data vault practitioners since 2001.

    • @mastering_snowflake
      @mastering_snowflake  Рік тому +1

      The point being you were still constrained by on prem resources regardless of your approach. ELT was a way of adopting a pattern to work around the constraints of moving data out of the db to your ETL infrastructure and back again.
      The elastic scalability of the cloud opened up new possibilities when adopting elt patterns

    • @isinpresshenning
      @isinpresshenning Рік тому

      @@mastering_snowflake but ELT could be performed before cloud data platforms.

  • @livenotlive
    @livenotlive Рік тому

    Great video, it will help more if you can tell why dbt should be used over snowflake native transformation options like procedure etc.?

  • @fahadmahmood7150
    @fahadmahmood7150 2 роки тому

    Excellent explanation how DBT works for performing transformation in ELT process in snowflake

  • @jeetuburman405
    @jeetuburman405 10 місяців тому

    Hi @adam -
    I'm trying to pass a list of queries as an input to macro in my dbt project, the query is going to run on Big query in the background - I want to handle the exception in the macro - on how to through an exception if the query is having some sort of syntax issue or if table names are missing in the warehouse. I tried various ways but can't figure out a suitable solution to it. Cuz if one query is failing it is causing the process to stop, and what I want that, if a Query fails to execute it moves to the next item in the list

  • @BrentOsborne-c2e
    @BrentOsborne-c2e Рік тому

    Great vid. Do you have an opinion on Paradime ? I’m starting to see that appear. What’s your take on this and the value add ?

  • @sharanchandrasekaran8399
    @sharanchandrasekaran8399 2 роки тому

    Thanks for the details very informative

  • @juderenaudin8937
    @juderenaudin8937 2 роки тому +1

    Ok Good ,Intéréssant !

  • @rajeshchowdary9151
    @rajeshchowdary9151 Рік тому +2

    sir your audio is bad is this problem with youtobe

    • @mastering_snowflake
      @mastering_snowflake  Рік тому

      I think it was just UA-cam for you as no one else has mentioned this. Thank you!

  • @AbdullahShoukat-h5c
    @AbdullahShoukat-h5c 10 місяців тому

    great!

  • @ricardo_krohn
    @ricardo_krohn Рік тому

    oloco, parece o Adam Sandler