End Result Will Shock You!!

Поділитися
Вставка
  • Опубліковано 23 гру 2024

КОМЕНТАРІ •

  • @user-wl4zu2ok1e
    @user-wl4zu2ok1e 4 дні тому +8

    The solutions to the polynomial equation ( n^2 + n^4 = n^6 ) include ( n = 0 ), approximately ( n = 1.272 ), approximately ( n = -1.272 ), and the complex solutions approximately ( n = 0.786 i ) and ( n = -0.786 i ). However, only ( n = 1.272 ) (the square root of the golden ratio, ( phi ) is a viable solution in the context of the Pythagorean theorem, as negative solutions, complex solutions, and ( n = 0 ) are not optimal for representing the lengths of the sides of a triangle. I hope this cleared up any confusion.

  • @c.jishnu378
    @c.jishnu378 5 днів тому +32

    Fun fact- The Golden Ratio is the most irrational n.o, hence places where irrationality is expected and will work the best, use golden ratio automatically(not intentionally); not because of magic.

    • @opalkarli
      @opalkarli 5 днів тому +3

      how can a number be more irrational than another number

    • @landsgevaer
      @landsgevaer 4 дні тому +1

      @@opalkarli Its rational approximations converge slowest in terms of the magnitude of the numerator and denominator.
      Has to do with the fact that its continued fraction representation equals 1;1,1,1,1,...

    • @opalkarli
      @opalkarli 4 дні тому

      @ oh, ok! Thanks!

  • @hazevthewolf178
    @hazevthewolf178 14 годин тому +1

    I love the solution. For some ineffable reason, it doesn't totally surprise me.

  • @SkibidiSigma-u5v
    @SkibidiSigma-u5v 5 днів тому +14

    n= sqrt(golden ratio)

  • @jackkalver4644
    @jackkalver4644 7 годин тому

    It only takes one second to realize that the golden ratio is involved.
    n^2+(n^2)^2=(n^3)^2
    n^2+(n^2)^2=(n^2)^3
    1+n^2=(n^2)^2
    n^2=Φ

  • @JohnHendricks-r8n
    @JohnHendricks-r8n 4 дні тому +7

    How much do I despise the AI voice over??.no one actually talks like this.

  • @stpat7614
    @stpat7614 2 дні тому +1

    Slightly different method.
    n^2 + (n^2)^2 = (n^3)^2
    n^2 + (n^2)^2 = n^(3*2)
    n^2 + (n^2)^2 = n^(2*3)
    n^2 + (n^2)^2 = (n^2)^3
    Let u = n^2
    u + u^2 = u^3
    (u + u^2) - (u + u^2) = u^3 - (u + u^2)
    0 = u^3 - u - u^2
    0 = u^3 - u^2 - u
    u^3 - u^2 - u = 0
    u(u^2 - u - 1) = 0
    Suppose u = 0
    u = 0
    Remember, u = n^2
    n^2 = 0
    sqrt(n^2) = +/- sqrt(0)
    n = +/- 0
    n = 0 (Yes, a triangle can have such dimensions)
    Suppose 1*u^2 - 1*u - 1 = 0
    Let a = 1, b = -1, c = -1
    u = (-b +/- sqrt[b^2 - 4*a*c]) / (2*a)
    u = (-[-1] +/- sqrt[(-1)^2 - 4*1*(-1)]) / (2*1)
    u = (1 +/- sqrt[1 + 4]) / (2)
    u = (1 +/- sqrt[5]) / 2
    u = (1 + sqrt[5]) / 2, or u = (1 - sqrt[5]) / 2
    Remember, u = n^2
    n^2 = (1 + sqrt[5]) / 2, or n^2 = (1 - sqrt[5]) / 2
    (1 - sqrt[5]) / 2 < 0, so reject (1 - sqrt[5]) / 2
    n^2 = (1 + sqrt[5]) / 2
    sqrt(n^2) = +/- sqrt([1 + sqrt(5)] / 2)
    n = +/- sqrt([1 + sqrt(5)] / 2)
    n = sqrt([1 + sqrt(5)] / 2), or n = -sqrt([1 + sqrt(5)] / 2)
    n = -sqrt([1 + sqrt(5)] / 2) < 0, so reject -sqrt([1 + sqrt(5)] / 2)
    n = sqrt([1 + sqrt(5)] / 2)
    n = sqrt(1 + sqrt[5]) / sqrt(2)
    n1 = 0
    n2 = sqrt(1 + sqrt[5]) / sqrt(2)

  • @balexplays
    @balexplays 2 дні тому +1

    underrated channel

  • @bleed521
    @bleed521 День тому

    Let n = 1.616, then a² = 2.618 and a³ = 4.236. The hypotenuse of the rectangle triangle with perpendicular sides a² and a³ es just sqrt(n² + n² n²) wich gives 3.07768. The equation n² + n⁴ = n⁶ is jus a polynomial in n with two solutions: 0 and 1.618 (the golden ratio) The way you put the problem is wrong for there is not such a triangle.

  • @ajithjohn4803
    @ajithjohn4803 14 годин тому

    Can’t we solve using trigonometry? Write sin and cos functions of an angle and then equating sum of squares of sin and cos to one?

  • @alexandermorozov2248
    @alexandermorozov2248 2 дні тому

    Можно было бы сразу рассмотреть подобный треугольник с коэффициентом подобия n и сторонами 1, n, n^2.

  • @TheEulerID
    @TheEulerID 2 дні тому

    It's a fairly straightforward problem for a "Math Olympiad, or even a Harvard University Entrances Exam. It was clear from the start it was going to be a quadratic multiplies by n^2. I was even able to work out n^2 in my head using the quadratic equation.

  • @davidbrown8763
    @davidbrown8763 4 дні тому +1

    Thanks for the challenge. I solved in less than a minute by using the quadratic formula.

  • @MarcosGallardo1959
    @MarcosGallardo1959 2 дні тому

    The triangle can be simplified by dividing all sides by n. the resulting triangle is solved by pythagoras theorem easily.

  • @Christopher-e7o
    @Christopher-e7o 12 годин тому

    X,2×+5=8[n3]

  • @thgar4850
    @thgar4850 День тому

    By creating problem where the answer is the square root of the golden ratio, we have created a problem that has one solution of the square root of the golden ratio. In other words, we forced the answer by choosing the side lengths. Isn't that so impressive? The answer is of course not.

  • @landsgevaer
    @landsgevaer 4 дні тому

    Any reliable source that phi systematically appears in the spirals of galaxies? (Apart from coincidental matches.)

  • @TheMultiverse0-v2v
    @TheMultiverse0-v2v 2 дні тому

    Isnt N² and N The same length?

  • @Palaksingh111-l7k
    @Palaksingh111-l7k 2 дні тому

    equation should have been n^2(n^3-N^2-1)=0

  • @wasimahmad-t6c
    @wasimahmad-t6c 4 дні тому

    9×9-4×4=65squroth=8.0622

  • @coding_classes_
    @coding_classes_ 5 днів тому +10

    Sooo Goood in the end was so melodic 😂😂❤

  • @zawatsky
    @zawatsky 5 днів тому

    n²:=x. x+x²=x³. x+x²-x³=x(1+x-x²)=0. x=0 - точка, не считается. 1+x-x²=0⇔x²-x-1=0. D=5, √D=√5. x=(1±√5)/2. n=√[(1±√5)/2]. (1-√5)

  • @splatbubble
    @splatbubble 5 днів тому

    Thanks Casey.

  • @MarieAnne.
    @MarieAnne. 4 дні тому

    Golden ratio yet again. I'm not sure whether I should be excited or disappointed.

  • @Christopher-e7o
    @Christopher-e7o 12 годин тому

    X,2×+5=5=8

  • @b213videoz
    @b213videoz 3 дні тому +1

    I am not shocked! Try harder next time 😊

  • @stpat7614
    @stpat7614 2 дні тому

    I don't see why you can't have a triangle with height 0 and base 0^2.

  • @sohamgohil1722
    @sohamgohil1722 5 днів тому +3

    🪙Golden Ratio= 1.618 💛

  • @heenakhandelwal8608
    @heenakhandelwal8608 5 днів тому +1

    That was simply amazing ❤❤. Yesterday only I was reading about golden ratio and this question popped up today! Coincidence?

  • @tonioliii
    @tonioliii 5 днів тому +5

    N=0

    • @zawatsky
      @zawatsky 5 днів тому

      Not counts. )

    • @tonioliii
      @tonioliii 5 днів тому +1

      @zawatsky yes counts

    • @zawatsky
      @zawatsky 5 днів тому

      @@tonioliii точка не считается отрезком. При x→0 отрезок ещё может быть бесконечно малым, но фигура с нулевым габаритом - это точка по определению, т. е. уже не отрезок. No exceptions.☝👀

    • @obbyistguywhodoessomeguides
      @obbyistguywhodoessomeguides 5 днів тому +1

      @@tonioliiiit would not be a triangle if n = 0 or less

    • @MarieAnne.
      @MarieAnne. 4 дні тому +2

      @@zawatsky Mathematically it counts, in the case of degenerate triangles/

  • @ZDTF
    @ZDTF 5 днів тому +3

    N^2+N^4=(N^3)^2
    Sigma sigma boy sihma boy

  • @briant7265
    @briant7265 День тому

    Not shocked

  • @joeschmo622
    @joeschmo622 5 днів тому +1

    Haha, cat...

  • @patriciaceli1536
    @patriciaceli1536 5 днів тому

    😮

  • @icemortisbs9487
    @icemortisbs9487 5 днів тому

    Да

  • @BOJO.colonization
    @BOJO.colonization 5 днів тому

    1

  • @tvrashid
    @tvrashid 3 дні тому

    φ

  • @lilith-r2r
    @lilith-r2r 4 дні тому +1

    as there cannot be real certain 95 angles degrees, there sno exact solution of this problem, so ı wont be getting tired by trying to think about thşs math solution which gets me too tired! ( ı hate thinking! it is so disturbing)

  • @petersaxton9007
    @petersaxton9007 3 дні тому

    1