A Very Radical Equation Solved in Two Ways

Поділитися
Вставка
  • Опубліковано 2 січ 2025

КОМЕНТАРІ •

  • @kaslircribs5804
    @kaslircribs5804 3 роки тому +4

    I love your first method of solving this radical equation. Thank you sir.

  • @piyushdaga357
    @piyushdaga357 3 роки тому +13

    Won my heart😍!
    This approach was worth it, Great approach to solve a radical equation like this. 😀

    • @SyberMath
      @SyberMath  3 роки тому +3

      Glad you liked it! 🥰

  • @vienven6696
    @vienven6696 3 роки тому +3

    assume x =sin(a)*sin(a), it will be easier to simplify : sin(a)-sqrt(sin(a)*sin(a)-cos(a))=1->2*sin(a)-cos(a)=1 ->sin(a)=4/5->x=14/25

  • @frentz7
    @frentz7 2 роки тому

    You can get the equation 2 sqrt(x) = 1 + sqrt(1 - x) of 5:19 in absolutely normal steps, just starting from beginning and isolating a radical, then squaring both sides.

  • @זאבגלברד
    @זאבגלברד 3 роки тому

    At 2:38 you can square both sides of (1-x)^0.5 < x and find that the domain of the problem is 0.618 < x < 1 (5^0.5 - 1)/2 is approximatly 0.618

  • @snejpu2508
    @snejpu2508 3 роки тому +3

    This time you can just square and square both sides and things cancel out beautifully. The only solution I found is 16/25=0,64, but more important thing is the domain. You can easily see that x is greater or equal to 0 and 1-x as well, so x is smaller or equal to 1. But taking the biggest radical into account, you receive new points on the x axis and finally the domain is only from (sqrt(5)-1)/2 to 1.

  • @dr.rahulgupta7573
    @dr.rahulgupta7573 3 роки тому +1

    Simple and clear presentation of the topics. Thanks .DrRahul Rohtak Haryana India

    • @SyberMath
      @SyberMath  3 роки тому +1

      So nice of you, Dr. Rahul!

  • @yanmich
    @yanmich 3 роки тому +1

    It should be mentioned that the domain of the radical function on the LHS should be the interval [ (sqrt(5) - 1)/2, 1], and since the candidate solution x = 16/25 lies there it is a valid solution.

  • @tonyhaddad1394
    @tonyhaddad1394 3 роки тому

    Mann thats a nice problem and youre approach was insane !!!

  • @MarcoMate87
    @MarcoMate87 3 роки тому +1

    It remains to check that x = 16/25 satisfies the other condition sqrt (1-x) < x, which is not trivial, because for example 1/2 doesn't respect this inequality, in fact, 1/2 > 1/4. Luckily sqrt (9/25) = 3/5 < 16/25 and the condition is satisfied.

  • @rafael7696
    @rafael7696 3 роки тому +1

    Very nice the first method

  • @atanuroy3548
    @atanuroy3548 Рік тому +1

    Great 👌 math tricks.thank you sir.

  • @fedorlozben6344
    @fedorlozben6344 3 роки тому

    Interesting trick :)
    I did not know about it,now i will

  • @vcvartak7111
    @vcvartak7111 3 роки тому +2

    Second method is simple and more systematic

  • @ajeanvi11e
    @ajeanvi11e 3 роки тому +2

    Second method was more straight forward 👍🏽

  • @18angchikien75
    @18angchikien75 3 роки тому

    Very good

  • @scottleung9587
    @scottleung9587 2 роки тому

    Got it using the second method!

  • @snejpu2508
    @snejpu2508 3 роки тому +1

    Nicely done with the first method. It seems more universal for this kind of problems, because if not the cancelations, squaring both sides wouldn't work that well. But still, I couldn't resist squaring both sides at the beginning and see what I was going to get. : )

  • @joaquingutierrez3072
    @joaquingutierrez3072 3 роки тому +2

    That first method was amazing!!
    When I saw that bunch of radicals I tried to trig sub but that didn't turn out well.
    Thank you for the video!!!

    • @SyberMath
      @SyberMath  3 роки тому

      You're welcome! Glad it helped!

    • @johngreen3543
      @johngreen3543 3 роки тому

      Trig substitutions should always be avoided at all costs, because they make the problem much harder.

  • @patparker00
    @patparker00 3 роки тому

    x= 0 IS a valid solution. You just have to check all possible signs from all of those radicals.
    sqrt(x) - sqrt(x - sqrt(1-x)) = 1
    x = 0
    sqrt(0) - sqrt(0 - sqrt(1- 0)) = 1
    sqrt(0) - sqrt(0 - sqrt(1)) = 1
    0 - sqrt(0 +/- 1) = 1
    0 - sqrt(1) = 1 || 0 - sqrt(-1) = 1
    0 +/- 1 = 1 || 0 +/- i = 1
    0 + 1 = 1 || 0 - 1 = 1 || 0 + i = 1 || 0 - i = 1
    YES || NO || NO || NO
    A similar thing happens for x = 16/25 although you get 8 possible equations, only 1 of which is valid.

  • @irwandasaputra9315
    @irwandasaputra9315 3 роки тому

    x-√(1-x)=1-2√x+x
    -√(1-x)=1-2√x
    √(1-x)=2√x-1
    1-x=4x-4√x+1
    -x=4x-4√x
    -4√x=-x-4x
    -4√x=-5x
    x/√x=-4/-5
    √x=4/5
    x=16/25

  • @michaelempeigne3519
    @michaelempeigne3519 3 роки тому

    x / sqrt ( x ) = sqrt ( x ) for x > 0

    • @SyberMath
      @SyberMath  3 роки тому

      How do we use that here?

    • @michaelempeigne3519
      @michaelempeigne3519 3 роки тому

      @@SyberMath if you remember you took it down to 5x = 4*sqrt ( x )
      if we divide by 5*sqrt ( x ) on both sides you get : sqrt ( x ) = 4 / 5
      and that means x = ( 4 / 5 )^2 = 16 / 25

    • @SyberMath
      @SyberMath  3 роки тому

      @@michaelempeigne3519 Oh I see! You're right. We don't have to square both sides. Good thinking 😁

  • @kurtlichtenstein2325
    @kurtlichtenstein2325 3 роки тому +1

    Dang, I thought I saw gold in the thumbnail.

  • @FrankACai
    @FrankACai 3 роки тому

    This equation relates to Pythagorean triple the famous 3-4-5

  • @antoniussupriyantaanton5847
    @antoniussupriyantaanton5847 3 роки тому

    I like.... Is the best

  • @Артьомдругартем
    @Артьомдругартем 3 роки тому

    По-японски это называется
    Нахера та хата!
    Два возведения в квадрат,сокращения и готов ответ.

  • @enhace15anos.83
    @enhace15anos.83 3 роки тому +1

    Easy