Lec - 79 Counting Homomorphism Using Algorithm | IIT JAM | CSIR UGC NET | GATE MA | B Sc

Поділитися
Вставка
  • Опубліковано 16 гру 2024

КОМЕНТАРІ • 66

  • @singingkakida4945
    @singingkakida4945 5 років тому +4

    Sir u are my favourite teacher in absteact algebra .u r not only a good teacher but also a good human being

  • @Divyakant2341991
    @Divyakant2341991 4 роки тому +1

    Outstanding mind blowing superb teaching and i have no words for your teaching method

  • @gatecsirnetmathematics773
    @gatecsirnetmathematics773 2 роки тому

    Thanks sir for such a great and helpful video.

  • @AmanDeep-us9gf
    @AmanDeep-us9gf 5 років тому +1

    Ur videos r vry helpful sir 🙏🏻🙏🏻🙏🏻🙏🏻🙏🏻🙏🏻

  • @archanakumarimeena3058
    @archanakumarimeena3058 3 роки тому

    Sir 8:13 par Z2 SE k1 automorphism kese hua automorphism to group to itself hota h na? Aur Autz2=U(2) kese hua?

  • @sandeepjaiswal7505
    @sandeepjaiswal7505 4 роки тому

    Nice explanation sir thanks for help us

  • @archanakumarimeena3058
    @archanakumarimeena3058 3 роки тому

    21:47 aapne Likha h f(z8)=z4 but f(z8) isomorphic to z4 Hona chahiye na, ye equal thodi hoga?

  • @kirankumarsv4411
    @kirankumarsv4411 6 років тому +5

    Sir, At 20:08, the number of cycle decompositions of whose lcm is 4 and sum is 8 in S8 will be:
    1,1,1,1,4 of type (abcd) ,
    1,1,2,4 of type (ab)(cdef),
    2,2,4 of type (ab)(cd)(efgh),
    4,4 of type (abcd)(efgh).
    You left the possiblity of type (ab)(cd)(efgh) ?. I don't know if i'm wrong or right. Please correct me sir.

    • @MathematicalScience
      @MathematicalScience  6 років тому

      but we need an element of order 8, there is no possibility being order 8

    • @kirankumarsv4411
      @kirankumarsv4411 6 років тому +1

      @@MathematicalScience No sir. At, 20:08 we were finding, number of cyclic subgroup of order 4 in S8. So we're calculating, number of elements of order 4 in S8. So will there be four CD's which I mentioned above?.

    • @MathematicalScience
      @MathematicalScience  6 років тому +1

      @@kirankumarsv4411 yes u r ryt,, very good ,, we must take this possibility

    • @ravishkumar8422
      @ravishkumar8422 2 роки тому

      @13.36 time, how z8/(0) is isomorphic to z8 ? why can't it be isomorphic to non abelian group D4 which has 8 elements?

  • @VinodKumar-ye7ii
    @VinodKumar-ye7ii 5 років тому +2

    Can you plz let me know the any book which contains example and exercise like this..thanks

  • @pankajkumar-hg9is
    @pankajkumar-hg9is 3 роки тому

    Nice sir

  • @Iitian_satyendra
    @Iitian_satyendra 3 роки тому +1

    outstanding 💕

  • @nanditakundu7020
    @nanditakundu7020 4 роки тому +1

    Sir please upload such detailed videos on ring homomorphism. And thank you so much sir

  • @archanakumarimeena3058
    @archanakumarimeena3058 3 роки тому

    29:00 par hum keh the h S7 ke Pas cyclic subgroup hoga Hume kese pata ki Jo order 10 Ka subgroup h vo cyclic ki hoga?

  • @PranjalPandey-viralvideo
    @PranjalPandey-viralvideo Рік тому

    Thanku so much sir ❤❤

  • @sayanjitb
    @sayanjitb 4 роки тому +1

    At 9:53 why Z2 is automorphic to K1 subgroup of S3?

  • @mdrakibulhasan5165
    @mdrakibulhasan5165 3 роки тому

    I am one of your viewer , sir please kuch questions karaiye har topic par

  • @AmanDeep-us9gf
    @AmanDeep-us9gf 5 років тому +2

    sir can u plz tell ye topic kis book mein milega ... gallian and dummit foote mein to hai nhi .
    plz sir reply ....🙏🏻🙏🏻🙏🏻

    • @MathematicalScience
      @MathematicalScience  5 років тому +1

      not in any book ,, we just apply theory

    • @AmanDeep-us9gf
      @AmanDeep-us9gf 5 років тому

      @@MathematicalScience ok sir g, thnks . u r providing very unique information thro ur videos thnx a lot🙏🏻🙏🏻🙏🏻

  • @kothakalvamurali7577
    @kothakalvamurali7577 3 роки тому +1

    = how it possible please tell sir 1:45

  • @archanakumarimeena3058
    @archanakumarimeena3058 3 роки тому

    Sir H1={0} agar generator h z8 mein to ye bhi to group ke Sare elements generate Kar sakta h na jese 0+1,0+2.... Hum use sirf trivial subgroup kyo keh rhe h please clear this doubt

  • @ansariiqbal1967
    @ansariiqbal1967 2 роки тому

    Bro you are explanation is to much good

  • @binayakbanik1694
    @binayakbanik1694 4 роки тому

    Sir in the 2nd example in case 3,, you said it will be isomorphic to Z4,, but it will be isomorphic to K4 as well??? So basically we have to find number of subgroup isomorphic to K4 in S8 as well???

  • @shivamsharma6959
    @shivamsharma6959 4 роки тому +1

    Is there any general formula for finding number of group homomorphism from Zn to Sm ?

  • @samrarehmat4543
    @samrarehmat4543 6 років тому +1

    plz also tell how to find automorphisms of dihedral subgroups or groups like D6

  • @ravishkumar8422
    @ravishkumar8422 2 роки тому

    @13.36 time, how z8/(0) is isomorphic to z8 ? why can't it be isomorphic to non abelian group D4 or Q8 which has 8 elements? Q8 is quarternian group, D4 is dihedral group

    • @MathematicalScience
      @MathematicalScience  2 роки тому

      Just in one line by FTH

    • @ravishkumar8422
      @ravishkumar8422 2 роки тому

      @@MathematicalScience Why can't it be isomorphic to Q8 or D4?

    • @humanity3049
      @humanity3049 2 роки тому +1

      @@ravishkumar8422 a(0) tpye elements honge quotients group Mai where a belong to quoitient group.
      Now ae is always a since e is identity.

    • @ravishkumar8422
      @ravishkumar8422 2 роки тому

      @@humanity3049 I didn't get your explanation. Would you elaborate on it??

    • @humanity3049
      @humanity3049 2 роки тому +1

      @@ravishkumar8422 z8/(e) ~z8 always
      Because quotient group of z8/(e) contains all the right or left cosets of z8
      a(e) type ke elements where (a) belong to z8.
      Now take a=1, 2,3,4...
      And form quotient group z8/(e)

  • @babool2050
    @babool2050 6 років тому +1

    Normal series,composition series, Solvable group, Nilpotent group, sylow theorem proof videos kindly upload sir

  • @mohit9798
    @mohit9798 4 роки тому +1

    How many onto homomorphism from Q8 to Q8 ?

    • @MathematicalScience
      @MathematicalScience  4 роки тому

      Aut(Q8)=24

    • @mohit9798
      @mohit9798 4 роки тому

      @@MathematicalScience automorphism including both one one and onto
      I just want to count onto
      and there may be possibility s.t. some homomorphism are onto not one one so that such type of homomorphism are also included.

    • @MathematicalScience
      @MathematicalScience  4 роки тому +1

      @@mohit9798 there is only 24 onto homomorphism, else are not onto

    • @mohit9798
      @mohit9798 4 роки тому

      @@MathematicalScience ok sir thank you

    • @mohit9798
      @mohit9798 4 роки тому

      Total no. of homomorphism from Q8 to Q8 ?

  • @ichhasrivastava4892
    @ichhasrivastava4892 5 років тому +1

    Sir S3 to S4 bta dijiye