A beautiful differential equation with an aesthetically pleasing result

Поділитися
Вставка
  • Опубліковано 1 лют 2025

КОМЕНТАРІ • 50

  • @АлексейБеляев-х1т
    @АлексейБеляев-х1т 9 місяців тому +53

    It becomes even more beautiful when you realise that the linear solutions are actually ALL tangents to the unit circle

    • @florisv559
      @florisv559 9 місяців тому +4

      That's so with all Clairaut DEs. The singular solution is called the envelope of the linear solutions, because it's tangent to all those solutions. There is indeed great beauty in that.

  • @megalomorph
    @megalomorph 9 місяців тому +27

    For the u-sub near the end, you don’t have to do a trig sub because you have the x in the numerator. Doing u=1-x^2 is simpler.

    • @xizar0rg
      @xizar0rg 9 місяців тому +5

      Can't let Weierstrauss have all the trig substitutions.

    • @nolanrata7537
      @nolanrata7537 9 місяців тому +5

      You don't need any substitution, the integral is already of the form u'/2sqrt(u) and integrates directly to sqrt(1-x^2) + C

    • @megalomorph
      @megalomorph 9 місяців тому +2

      @@nolanrata7537 saying it is of the form u’/2sqrt(u) is doing a substitution. Maybe you mean that you can recognize that it is of this form and do the integration without writing it down? But doing a substitution in your head is still doing a substitution.

    • @nolanrata7537
      @nolanrata7537 9 місяців тому

      @@megalomorphNot really, here it's easy to see that sqrt(1-x^2) is a primitive of -x/sqrt(1-x^2), without any change of variable needed. A similar example would be integrating 2x*exp(x^2), you can see that a primitive is simply exp(x^2) without needing to do any substitution.

    • @megalomorph
      @megalomorph 9 місяців тому +3

      @@nolanrata7537 Maybe this is a definitional thing, where we disagree on exactly what u-substitution means. For me, u-substitution is what happens when you use ethe FTC on the integral of the chain rule. It is the act of noting when you have a composition of functions, the outside functions you know the anti-derivative of, and an additional multiplicative factor of the derivative of the inside function. There are formal processes you can go through to aid this when the integral is particularly hairy, or that let you get to an intermediate point when you don't immediately know the anti-derivative of the outside function, but that is an implementation detail that is not strictly necessary.
      The fact that you can do some substitutions by inspection once you have experience does not make it not substitution. The u-substitution is simply the process by which you recognized that your thing was the derivative of a composition, regardless of what you write down.

  • @ADN0Infinity
    @ADN0Infinity 9 місяців тому +3

    Really beautiful to come that far to end on an unit circle🎉🎉🎉

  • @aperson6291
    @aperson6291 8 місяців тому +1

    Interesting timing, I just finished a quick project on the Clairaut equation in my ODE class.

  • @pacolibre5411
    @pacolibre5411 8 місяців тому +1

    I was able to guess a solution based on the fact that the non-sqrt terms look like xdy-ydx which is the polar angle differential. You then get -r^2dtheta = ds. Since circles are rdtheta = ds, this works for a circle of radius 1 (or negative 1, but that’s geometrically the same object)

  • @davidalejandrolopeztorres1083
    @davidalejandrolopeztorres1083 9 місяців тому +1

    I'm not used to comment on UA-cam, but I think I have something to say with this one. Without any previous knowledge of non linear ODEs, my first approach was trying to define dy/dx = tan(u), with u some function of x to avoid the sqrt. After substituting in the original equation, we obtain a nice definition of y in terms of u and x. Then, I derivated the whole thing with respect to x, obtaining a new definition of dy/dx.
    After making equal both definitions of dy/dx, I eventually dealt with the same two scenarios (in my case, du/dx = 0 implied a soution of the form y = xtan(C) + sec(C), equivalent to the one you showed).
    I found really surprising how you deal with it without struggling with trig as much as I did.
    Thanks for your effort and nice explanation!

    • @maths_505
      @maths_505  9 місяців тому +2

      Your approach was very creative so points to you my friend.

  • @MrWael1970
    @MrWael1970 9 місяців тому +3

    Interesting DE. Thank you for your featured effort.

  • @megalomorph
    @megalomorph 9 місяців тому +5

    An alternative approach after differentiating is to use the first equation to solve for sqrt(1+y’^2), then substitute into the second equation. This yields a slight different separable equation to solve.

  • @CM63_France
    @CM63_France 9 місяців тому +2

    Hi,
    "terribly sorry about that" : 3:23 ,
    "ok, cool" : 7:48 .

  • @Warwickensis
    @Warwickensis 9 місяців тому +1

    I found it rather fun to transform the problem into polar coordinates and getting the same answers there.

  • @bandishrupnath3721
    @bandishrupnath3721 9 місяців тому +2

    We are half way to ur medal in yt❤

  • @Tosi31415
    @Tosi31415 9 місяців тому +9

    if he's french the pronounciation would be kinda like you say laurent in laurent series (same kind of o at the end, and same accent)

    • @Calcprof
      @Calcprof 9 місяців тому +4

      Agree Clah - ROH

    • @benjaminbrat3922
      @benjaminbrat3922 9 місяців тому

      Hey all! Bilingual Fr/En here, the best way to explain it would be:
      - the word "clay"
      - a guttural r, coded ʁ in phonetics (I think it doesn't exist in English)
      - the same "o" sound than in "row", just without the "w" diphthong
      Ta-daa!
      klɛʁo in IPA Reader

    • @imTyp0_
      @imTyp0_ 9 місяців тому +3

      @@Calcprofmore like claire - o

    • @Calcprof
      @Calcprof 9 місяців тому

      @@imTyp0_ok

  • @GreenMeansGOF
    @GreenMeansGOF 9 місяців тому +4

    4:30 I would do a u substitution instead

  • @florisv559
    @florisv559 9 місяців тому +9

    Clairaut: 18th century French mathematician. Clair rhymes with English bear, aut with o.

  • @YouTube_username_not_found
    @YouTube_username_not_found 9 місяців тому +1

    Something about the solving procedure of Clairaut's equation boggles me; Are we allowed to differentiate y' ? Who said that y should be twice differentiable? I think one should prove this.

  • @skyethebi
    @skyethebi 9 місяців тому +1

    “Where the general form is y = xy’ + f(y’) where f is a continuously differentiable function and *Clairaut is dead* ”

  • @insouciantFox
    @insouciantFox 9 місяців тому +1

    I'm worried about branching issues when you square both sides. Is that not a problem here?

    • @maths_505
      @maths_505  9 місяців тому +1

      Doesn't look like it especially because we checked by plugging in the information into the equation.

  • @MRGamesStreamer
    @MRGamesStreamer 9 місяців тому +1

    How to find this type of questions, what book prefer you?

    • @maths_505
      @maths_505  9 місяців тому

      Bro I just make up problems for myself 😭

    • @MRGamesStreamer
      @MRGamesStreamer 9 місяців тому +1

      @@maths_505 ok ok😂

    • @MRGamesStreamer
      @MRGamesStreamer 9 місяців тому +1

      Ok, How to find your answer 100% correct?

    • @maths_505
      @maths_505  9 місяців тому +1

      @@MRGamesStreamer just f**king around with it till it makes sense, investigating various scenarios and working backwards always helps.

  • @xizar0rg
    @xizar0rg 9 місяців тому +1

    Is there method behind the black/white background on the title cards?

    • @maths_505
      @maths_505  9 місяців тому +1

      The algorithm likes these better

    • @xizar0rg
      @xizar0rg 9 місяців тому +1

      @@maths_505 All hail the algo. /s (I look forward to a time when you no longer need it; your mostly useless video titles still bother me, but I understand why you do it. I'm just glad you don't have some "shocked face" graphic on the title card as well.)
      As an aside, this is one of your most elegant surprises at the end. I imagine someone with deeper imagination than I would have seen it coming sooner, but the Unit Circle falling out at the end is quite beautiful.

  • @vibaked
    @vibaked 9 місяців тому +1

    Be honest, did you start at the unit circle and work backwards toward the differential equation? 👀

    • @pandavroomvroom
      @pandavroomvroom 9 місяців тому +1

      im curious now

    • @maths_505
      @maths_505  9 місяців тому +4

      Well I was with the unit circle alone at home the other day and things .....kinda escalated.

  • @mcalkis5771
    @mcalkis5771 9 місяців тому +2

    She might not love me anymore, but I'll always love math.

  • @ArthurvanH0udt
    @ArthurvanH0udt 9 місяців тому +1

    VERY NICE. Pronunciation will be: kleh-rOH the t is silent!!

  • @roberttelarket4934
    @roberttelarket4934 8 місяців тому +1

    Clairoh is the way you pronounce his French name.

  • @dalehinds8008
    @dalehinds8008 9 місяців тому +2

    Alexis Clairaut was a Frenchman. So his name is pronounced CLAIR-OH

  • @mickodillon1480
    @mickodillon1480 9 місяців тому +2

    lovely but difficult i found.

  • @knivesoutcatchdamouse2137
    @knivesoutcatchdamouse2137 9 місяців тому +2

    Clairaut is dead?! I'm sorry, I'm going to need a minute here...

    • @Jalina69
      @Jalina69 9 місяців тому +1

      This channel is my daily dose of entertainment