What is a Combination - Why Does d/dx (x^n) = nx^(n-1) , Part 2

Поділитися
Вставка
  • Опубліковано 11 січ 2025

КОМЕНТАРІ • 7

  • @КостяВоробьев-р1х
    @КостяВоробьев-р1х 2 роки тому

    Clear message, clear structure, easy to understand, thank you

  • @JordanMetroidManiac
    @JordanMetroidManiac 10 років тому +1

    You can find combinations in Pascal's triangle.
    Memorize Pascal's triangle and you have memorized combinations. Here are the first few rows of the triangle. (1); (1, 1); (1, 2, 1); (1, 3, 3, 1). The equivalent of that is these combinations: (1C0); (2C0, 2C1); (3C0, 3C1, 3C2); (4C0, 4C1, 4C2, 4C3). You'll find that the numbers are the same. Permutation is another kind of thing like Combination. Using Combination, the order of the sets don't matter. So, there would be more possible combinations if you were to use permutation, where order of the sets does matter. To make it easier to understand, here's an example: Using C, (4 choose 2), and that's 6 possible combinations. Using P, (4 choose 2), and that's 12 possible combinations, which is more than 6. To memorize these Permutation numbers, say hello to the 3D Pascal's Pyramid! Lol

  • @Dracstar
    @Dracstar 10 років тому

    nvm. I got it!

  • @Dracstar
    @Dracstar 10 років тому

    Wait wait wait... What??? Confusing :p

  • @satyamyadav6294
    @satyamyadav6294 2 роки тому

    The image is too offensive

  • @clarissaparker1553
    @clarissaparker1553 5 років тому

    peasy

  • @clarissaparker1553
    @clarissaparker1553 5 років тому

    easy