Longitudinal Multilevel Modeling in R Studio (PART 1)

Поділитися
Вставка
  • Опубліковано 30 січ 2025

КОМЕНТАРІ • 28

  • @hotelsleeperwy3409
    @hotelsleeperwy3409 3 роки тому +1

    I declare you the GOAT of MML. You helped me so much out with my master thesis and my first study to publish. Thank you!!!

  • @flaviethevenard5109
    @flaviethevenard5109 3 роки тому

    Thank you very much for such a precise crash sourse on longitudinal modelling, forever grateful !

  • @gothicpriestess16
    @gothicpriestess16 5 років тому +2

    Excellent video!! Really helps understand every aspect of the modeling and the interpretation of the output

  • @shikharbhagoliwal6608
    @shikharbhagoliwal6608 4 роки тому +6

    This was an amazing video to watch and got a clear understanding of Longitudinal data. Can I please get the data set so that I can practice the models with this data set?

  • @arikimelman3640
    @arikimelman3640 Рік тому

    This is incredible, thank you

  • @rezat.ashtiani1338
    @rezat.ashtiani1338 3 роки тому

    Thank you. It was really helpful

  • @taiwankyh
    @taiwankyh 4 роки тому

    Very nice and clear explanation

  • @kar2194
    @kar2194 2 роки тому

    Hi Jon, first thank you for the wonderful video! A question from me and I would really appreciate if you could help.
    What is the data type of the Job site, ID, Days_of_Training? are they , , ?
    I am actually confused with data type for multilevel modeling, My dataset has 4 columns, example:
    Countries levels: Australia, US, Thailand, Malaysia..
    Status levels: Developed, Developing,
    Year : 2000, 2001, 2002, 2003, 2004
    Life expectancy : 87, 76, 69, 64
    Should I just convert Year to numeric, and having
    2000 as 0,
    2001 as 1,
    2002 as 2,
    2004 as 4 ?
    Many thanks mate

  • @alejandrarodriguezsanchez6667
    @alejandrarodriguezsanchez6667 4 роки тому

    just clarification. in the null model there is a random intercept effect. it is even estimated. if you want to take it out, then -1 should be set as an option after random= ... other than that, great video!

  • @MP-wf8sw
    @MP-wf8sw 2 роки тому

    Great! Thank you!!

  • @DemetriusKGreen
    @DemetriusKGreen 4 роки тому +2

    Great video! Does the "Time" variable need to be continuous like you have them labeled in the data (0, 1, 2, 3) or can they be factors (month_year, quarter, season, etc.) I know factors require dummy variables so I'm interested to know best practices.

  • @audreyaday6543
    @audreyaday6543 5 років тому

    Awesome video. Super helpful! :-)

  • @jaquelinearagoni5226
    @jaquelinearagoni5226 2 роки тому

    thank you very much!!

  • @nhelsabeck
    @nhelsabeck 5 років тому +5

    I have a question, if we have missing values in our outcome, nlme gives an error message. From what I have read online the suggestion is to set the argument na.action to equal na.omit. However, that eliminates the missing values. Shouldn't setting method to ML as you do in this video allow for the model to accommodate those missing values?

  • @leonieg3218
    @leonieg3218 5 років тому

    This is great. Thank you!

  • @katiekurczynski
    @katiekurczynski 5 років тому

    This was SUPER helpful for me. Now can you do one with a mediational hypothesis 😝 thanks for the videos!!

  • @jasonmoy8639
    @jasonmoy8639 3 роки тому +1

    For whoever see this video later than I am, you don't need to manually calculate ICC. Use the ICC function in the performance package. Also, people have argued the benefit of using lme (if your data is inherently multilevel) even with low ICC.

  • @navotnaor
    @navotnaor 3 роки тому

    Hi, these are great videos, quick question, if wanted to also fit a quadratic model, how would i do that?
    Thank you

  • @juditm9290
    @juditm9290 4 роки тому

    Hallo, thanks for the video this is super helpful! What happens when the intercept in the unconditional model is not significant? Do i just ignore and proceed with building the models?

  • @MZ-pj4eq
    @MZ-pj4eq 5 років тому

    Thanks for the videos^^

  • @milanfilipovic3648
    @milanfilipovic3648 4 роки тому

    Since some people missed days of training, why didn't you need to include an na.exclude argument in your lme function?

    • @lailimade
      @lailimade 3 роки тому

      i think lme function defaults to na.omit

  • @fansofihp1404
    @fansofihp1404 5 років тому

    Nice

  • @borjaaramburumunoa1291
    @borjaaramburumunoa1291 5 років тому

    Does anybody knows where can I find the data frame with wich he is working in the video?