Function Transformer | Log Transform | Reciprocal Transform | Square Root Transform

Поділитися
Вставка
  • Опубліковано 2 лис 2024

КОМЕНТАРІ • 51

  • @webtechbysuraj5942
    @webtechbysuraj5942 Рік тому +15

    26:38 --I just wrote the simple code instead of using column transformer and to use function transformer on the Fare column.
    accuracy was improved as you said.
    Thanks

  • @tarunmohapatra5734
    @tarunmohapatra5734 Рік тому +16

    I think there is a mistake while applying cross-validation on entire datasets because ideally it should be applied to training data. This is to prevent information leakage from the test set into the training process. The purpose of the test set is to simulate unseen data and evaluate the final model's performance. If you perform cross-validation before the train-test split, you may inadvertently use information from the test set leading to an overly optimistic assessment of the model's performance

  • @narendraparmar1631
    @narendraparmar1631 10 місяців тому +1

    Marvelous knowledge
    Thanks sir for your efforts😀

  • @jatinnandwani6678
    @jatinnandwani6678 5 місяців тому +1

    This was mindblowingly awesome! Thanks Nitish

  • @acharjyaarijit
    @acharjyaarijit Рік тому +1

    Sir, u r the best.. u know very think..

  • @dostirathi8254
    @dostirathi8254 7 днів тому

    i want to ask that is cross-validation used over training data or can apply over the whole x and y

  • @parikshitshahane6799
    @parikshitshahane6799 7 місяців тому +3

    One correction: I think square root transformation works good on left skewed data, not square transformation

  • @akshaychauhan545
    @akshaychauhan545 2 роки тому +2

    Should we remove outliers first or we can remove outliers after using transformer

  • @shantinamuna-r8x
    @shantinamuna-r8x 7 місяців тому

    so handling skewed or non-linear data mean scaling the data and feed it to the model directly . in addition it is use in EDA or feature engineering and moreover can we use standard scaler or any other scaler for data handling (skewed or non-linear)

  • @guljitsodhi6149
    @guljitsodhi6149 2 роки тому +2

    HI Sir, i started watching your vedio's ,very informative,but i have some errors while using some other similar data, can you help explaining and correcting my doubts?, i woulld really appreciate.Thanks

  • @sandipansarkar9211
    @sandipansarkar9211 2 роки тому

    finished watching and coding

  • @rajsharma-bd3sl
    @rajsharma-bd3sl Місяць тому

    When we are applying functional transformer to Age column of the training data , it is getting left skewed and not normally distributed. Is it the same for anyone ?

  • @mayurnaktode592
    @mayurnaktode592 2 роки тому +1

    @Campusx sir if data is skew or not normally distributed it means we have a outliers correct? For removing outliers we use trimming or capping. And if we use log transform then is it like it will adjust the outliers and convert it into normally distributed?

    • @agnimitram340
      @agnimitram340 2 роки тому

      I don't think non normal data means presence of outlier. Like Binomial distribution, Chi square distribution are not normal does this mean they have outliers??

    • @aaditstudent
      @aaditstudent Рік тому

      even after a converting to a normal distribution you can get rid of the outliers by removing from the 3rd or 4th std deviation

  • @theanalyst9629
    @theanalyst9629 3 роки тому +2

    Thanks man

  • @1981Praveer
    @1981Praveer Рік тому

    #campux @18:08 min, why did we use mean value. it might inject outliers. I think the median should be better. what's your opinion

  • @shubhamgosain4534
    @shubhamgosain4534 3 роки тому +1

    Thank you sir

  • @rehanansari8154
    @rehanansari8154 5 місяців тому

    I think nAge column was right skewed than the fare column

  • @jamalshah3657
    @jamalshah3657 25 днів тому

    can you provide us the OneNote Notes for 100 days of ML?

  • @malikahsan6648
    @malikahsan6648 Рік тому

    amazing

  • @vishalodyssey
    @vishalodyssey 6 місяців тому

    IF MY DATASET HAS 10 COLUMN AND FEW OF THEM ARE LEFT SKEWED AND FEW ARE RIGHT SKEWED AND SOME ARE NORMALLY DISTRIBUTED HOW DO WE HANDLE THOSE , DO WE APPLY DIFFERENT DIFFERENT TRANSFORMATION ON THE BASIS OF COLUMN

  • @abhisheksen4440
    @abhisheksen4440 Рік тому

    why we do log transformation when we have Standardization ?

  • @muhammadmustafa3158
    @muhammadmustafa3158 3 роки тому +1

    thanks sir !!

  • @murumathi4307
    @murumathi4307 3 роки тому +1

    This transform control than outlayer sir

  • @gauravgupta4983
    @gauravgupta4983 3 роки тому +4

    Sir log, sd and normalization tenio ka use same hi hota hai kiya? Teenon concept mein ham data ko ek normal range mein lekar aate hai, I am right

  • @dostirathi8254
    @dostirathi8254 7 днів тому

    if there is fillna function then why we use simpleimputer function over train and test data

  • @sarbajitde2547
    @sarbajitde2547 3 роки тому +2

    Sir, we can use the central limit theorem then why do we use such transformations to convert a pdf to the normal distribution?

  • @mukteshsingh8370
    @mukteshsingh8370 Місяць тому

    Day - 30

  • @ParthivShah
    @ParthivShah 8 місяців тому

    Thank You.

  • @debjeetmukherjee4591
    @debjeetmukherjee4591 8 днів тому

    Kaha impovement hua cross validation k baad Sir ji samjha nehi

  • @yashjain6372
    @yashjain6372 Рік тому

    doubt : Sir LR assume residual to be Normally distributed not the data. So, why we suddenly start making features to be ND . if Residual of LR is not normally ditributed that means relationship is not liner and we try to make those column ND which are not linear with Target Variable, This is my understand . Please explain.

    • @Ganeshkakade454
      @Ganeshkakade454 Рік тому

      Hi yash...Nice Question...I had also same question..Yeah we know there is assumption that residual should be normallly dirstibuted but also when u get data as normally distributed in certain algos like LR, logR then model performance gets better as we can reduce heterosedasticity from model...when u data is normally distruibuted model statistial power of compuattation gets increase..hope u got u r answer,,if U knew anything more ..plz feel free to share

  • @rkpatel-r5q
    @rkpatel-r5q 10 місяців тому

    why without using ML pipeline output [survived=arr[1]] and output of with using ML pipeline [notsurvived=arr[0] are not same ?

  • @amritajoshi8729
    @amritajoshi8729 4 місяці тому

    sir cross validation aapne entire data me ku laga diya. aise to before and after results sahi nahi aayenge ... :)

  • @excalibur2889
    @excalibur2889 2 роки тому

    function transformer come under which part of feature engineering ?

    • @beautyisinmind2163
      @beautyisinmind2163 Рік тому

      To make features normally distributed

    • @parthraghuwanshi2929
      @parthraghuwanshi2929 Рік тому

      @@beautyisinmind2163 does it is method of handling outlier or outlier should be handle differently

    • @beautyisinmind2163
      @beautyisinmind2163 Рік тому

      @@parthraghuwanshi2929 For handling outlier you can use other method, transformation is especially to make feature normal for linear model like LR, LogR, NB etc.

  • @mansichougule1174
    @mansichougule1174 3 місяці тому

    I'm not getting the coding part, can anyone please suggest me something??

  • @bepositivefoxx2241
    @bepositivefoxx2241 2 роки тому

    Sir ye normalisation bhi to same kam krta hai

  • @yujiitadori225
    @yujiitadori225 Рік тому

    i badly need this answer i have looked few place but i ain't getting the correct answer! Variable transformation( Function and Power Transform ) considered as featured transformation technique or this is another part of feature engineering method but not included in feature transformation ?

  • @MRAgundli
    @MRAgundli 4 місяці тому

    done

  • @depalvveturkar
    @depalvveturkar Рік тому

    Hello Sir,
    After applying Function Transformer my X_train shape is changing from (719,2) to (80,7) can you help me why is this happening, my X_test shape is intact. I am following your GitHub but still facing issues. Please help

  • @ajaykushwaha-je6mw
    @ajaykushwaha-je6mw 3 роки тому +1

    I have a doubt in data preprocessing.
    First we remove outlier --> Feature scaling --> Gaussian Distribution
    or
    remove outlier --> Gaussian Distribution --> Feature scaling kindly help ?

  • @as8401
    @as8401 Рік тому

    this project difficult to understand