I Can't Believe Andrew Tate Solved This Math Problem

Поділитися
Вставка
  • Опубліковано 15 січ 2025

КОМЕНТАРІ • 12

  • @uzairname
    @uzairname 11 місяців тому +10

    Do a matrix problem. Heard he has a lot to say about those

  • @latins4931
    @latins4931 11 місяців тому +5

    You could also multiply both by x and have:
    x^2 + y^2 >= 2xy
    Subtracting both sides by 2xy you get:
    x^2 - 2xy + y^2 >= 0
    And finally this equals to
    (x-y)^2 >= 0
    The left term is a square which is always not negative, so the equation is true.

    • @myst3ry_g3n3ral
      @myst3ry_g3n3ral 10 місяців тому

      was my idea as well. i dont understand why they needed that arithmetic-geometric-formula this is sooooo much easier xd

    • @Bof-q6l
      @Bof-q6l Місяць тому

      Isn't multiplying by x adding a solution you should also mention that x is different from 0 to make this an equivalence if not it will just be an implication and to solve completely you should do the other way around so that S is included in the solutions and the solutions are included in S.

  • @nourelhoudasabbagh
    @nourelhoudasabbagh 10 місяців тому +1

    Thank you, this very helpful 👏🏻👏🏻

  • @testx0170
    @testx0170 11 місяців тому

    Last inequality is just a+b≥2sqrt ab, cyclic product gives (a+b)(a+c)(b+c)≥8sqrt(a^2b^2c^2)=8abc, equality only holds when a=b, a=c, b=c or just a=b=c

  • @philosophieoverdose9332
    @philosophieoverdose9332 11 місяців тому +2

    Again thank you soo much for this video , at the same time i follow some books dedicated to olympiad inequalities,
    Today i want to share this inequalitie with the beautiful community,if:a,b,c are positif numbers and:
    a+b+c=1 proof that :
    1/(b+c) +1/(a+c) +1/(a+b)>=9/2

    • @MathWisdom42
      @MathWisdom42  11 місяців тому +1

      Nice one, thank you. Spoiler alert , a hint down below:
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      Think of Cauchy-Schwarz inequality

    • @philosophieoverdose9332
      @philosophieoverdose9332 11 місяців тому +2

      @@MathWisdom42 i prof it using Nesbitt inequality , i'l try to do it by Cauchy Schwartz, again thank you soo much ,😊😊🌹

  • @yugam6578
    @yugam6578 11 місяців тому +1

    Andrew tate, which books do you recommend for maths Olympiad

  • @mr.lego-ist8904
    @mr.lego-ist8904 11 місяців тому +2

    Keep on releasing these kinds of stuff that uses AI voices of popular people ✨... As a math enthusiast and a supporter of masculinity, this is 'perfect' content 💯...