Proof that every convergent sequence is bounded

Поділитися
Вставка
  • Опубліковано 25 гру 2024

КОМЕНТАРІ • 66

  • @b0b0123silva
    @b0b0123silva 4 роки тому +11

    6 years later and still helping people! Thanks.

  • @danieltrigo2928
    @danieltrigo2928 6 років тому +8

    Dude, I really appreciate your videos, they are a great contribution to my education. Thank you very much, and please keep going, your work is excellent!!!

  • @thedounut100
    @thedounut100 5 років тому

    I was doing this and literally wrote down that maximum arguement for n

    • @rokettojanpu4669
      @rokettojanpu4669 3 роки тому

      The max of any finite set exists, so M, as defined in the video, exists.

  • @사기꾼진우야내가죽여
    @사기꾼진우야내가죽여 4 роки тому +1

    Very sophisticated reasoning

  • @kiruvv
    @kiruvv Рік тому

    thank you so much that was so helpful, i was strugeling with this!! thanks from algeria

  • @snowyelsa3193
    @snowyelsa3193 7 років тому +1

    Thank you very much! Got exam tomorrow, your video really helped! :)

  • @dakshanakanapathy9478
    @dakshanakanapathy9478 2 роки тому +1

    Thank you sir it is very helpful to me

  • @Pandafist3000
    @Pandafist3000 9 років тому +3

    Thanks for a clear and correct proof! Sequence proofs using the technique of max{} can be a little tricky and I've seen at least two professor incorrect solutions to this problem.

    • @TheMathSorcerer
      @TheMathSorcerer  9 років тому

      Nathan Woollard Np! Yes you have to be very careful!

  • @beppenonantola216
    @beppenonantola216 6 років тому +2

    Extremely clear! Thanks

  • @iOSGamingDynasties
    @iOSGamingDynasties 4 роки тому +1

    Why |a_n|

    • @TheMathSorcerer
      @TheMathSorcerer  4 роки тому +1

      it's true because it is(not a good answer I know lol). Maybe look at it like this: |a_n|

    • @iOSGamingDynasties
      @iOSGamingDynasties 4 роки тому +1

      The Math Sorcerer thanks! Now i think i know it, and for the last part where we prove | a_n | N, this is based on definition of limit of sequence (there exists an N s.t. n>=N) and | a_n | < 1 + | L | right?

    • @TheMathSorcerer
      @TheMathSorcerer  4 роки тому +1

      Yes! Strict inequality there at the end n >N but yes you got it!!!

    • @zurinakasim2918
      @zurinakasim2918 4 роки тому

      @@TheMathSorcerer we say a_n≤ max {a1,a2....aN} because seq {an} may be increasing or decreasing right?

  • @THE_RIE_GUY
    @THE_RIE_GUY Рік тому +2

    love from india❤

  • @ananyasharma9630
    @ananyasharma9630 3 роки тому +2

    Is Converse valid ??? Every bounded sequence is convergent ??? Here it is not monotonic ......

    • @TheMathSorcerer
      @TheMathSorcerer  3 роки тому

      There are bounded sequences that do not converge. For example a_n = sin(n), or a_n = (-1)^n, etc

    • @TheMathSorcerer
      @TheMathSorcerer  3 роки тому

      so if it converges, it's bounded, but if it is bounded, that doesn't mean it converges
      To recap,
      converges => bounded
      bounded and monotonic => converges

  • @annienielsen7059
    @annienielsen7059 5 років тому

    Yes! It helped me! Thank you :)

  • @konohaninja2293
    @konohaninja2293 3 роки тому

    How can |an|

  • @mastermclovin0
    @mastermclovin0 8 років тому +2

    it helped a lot. thank you.

  • @guydude5109
    @guydude5109 4 роки тому

    Does this also apply for complex numbers? If not, how would the proof differ for them?

    • @rokettojanpu4669
      @rokettojanpu4669 3 роки тому

      The result generalizes to any metric space (we must first write down the generalization of limit to metric spaces). The complex plane with the usual metric is one such space.

  • @gabrielmccartney7975
    @gabrielmccartney7975 3 роки тому +1

    why is it still enough to consider only epsilon = 1?

    • @adrianc5675
      @adrianc5675 3 роки тому

      You can give any value for epsilon, it can be bigger or shorter and it does not matter or change anything.

  • @monishadamodaran677
    @monishadamodaran677 6 років тому +2

    why do we choose epsilon as 1? Can we choose any other number greater than 0?

    • @rishavmanhas
      @rishavmanhas 6 років тому

      ua-cam.com/video/MVbhdT0B7e4/v-deo.html
      Watch this ..
      Doubts will be absolutely cleared.

    • @Random-om8rq
      @Random-om8rq 5 років тому

      @@rishavmanhas NOOOOOOOOOOOOOOOOOOOOO IT'S PRIVAAAAATE :((((

  • @cloudhuang6691
    @cloudhuang6691 Рік тому +1

    Excuse me sir, isn't there any possibility that a convergent sequence "blows up" divergently in some of the first "N" terms so that makes the sequence unbounded?

    • @TheMathSorcerer
      @TheMathSorcerer  Рік тому +1

      No

    • @TheMathSorcerer
      @TheMathSorcerer  Рік тому +1

      Because if you have a finite number of values you can take the maximum of the absolute value of those values, call it M. If it converges it is bounded by say a number N. Then take the max of these two and that’s a bound for your sequence.🔥

    • @cloudhuang6691
      @cloudhuang6691 Рік тому

      @@TheMathSorcerer for example, name a sequence being like this:1, 2, 3, infinity, 4, 4, 4, 4, 4......and so forth. Isn't this sequence convergent (converges to 4) but unbounded sir?

  • @EmapMe
    @EmapMe 7 років тому

    Intuitively, why couldn't the terms of the sequence be infinity for some terms, then still approach some value when n approaches infinity?

  • @TheMathSorcerer
    @TheMathSorcerer  10 років тому +2

  • @popsicle7480
    @popsicle7480 5 років тому

    How do we know |an|

  • @serinacat4781
    @serinacat4781 7 років тому +3

    Omg I don’t understand it😢

  • @ShahidHussain-wj4vx
    @ShahidHussain-wj4vx 6 років тому

    ur video is helpful but....it is not so clear to see...plz don't use black backgrounds

  • @muhammedqadr1244
    @muhammedqadr1244 8 років тому +2

    The conversly is true ?
    we have a theorm say ( every bounded monotone sequence is convergant )

    • @TheMathSorcerer
      @TheMathSorcerer  8 років тому +3

      if it's bounded _and_ monotonic then it converges

    • @TheMathSorcerer
      @TheMathSorcerer  8 років тому +4

      there are plenty of bounded sequences that don't converge, for example a_n = (-1)^n, it's bounded since |a_n|

    • @zurinakasim2918
      @zurinakasim2918 4 роки тому

      Thabk you. I found that your videos are very helpful. The explainations are clear n easy to follow.. except one thing.. the black background makes the text hard to see

  • @ruchi1794
    @ruchi1794 5 років тому +1

    Is its converse true or not?

    • @TheMathSorcerer
      @TheMathSorcerer  5 років тому +1

      No it's not take (-1) to the n it's bound Ed but diverges. Could not find the exponent key on my phone😄

  • @noddyd1917
    @noddyd1917 5 років тому

    How do we know that an is less than or equal to max of a1....aN for n less than equal to N

    • @noddyd1917
      @noddyd1917 5 років тому

      Because it’s a decreasing sequence?

    • @MadTeacher
      @MadTeacher 5 років тому

      Because a_n is actually an element of the sequence so it must be less than the max of that sequence or equal if a_n is itself the max of the sequence.
      Watch this for the detailed answer: ua-cam.com/video/0JtVbOohQUg/v-deo.html

  • @tsepomchunu6156
    @tsepomchunu6156 4 роки тому

    To be honest I'm still kind of confused. For the sequence to be bounded, does it not need to be bounded above and below?

    • @youtubeaccount1718
      @youtubeaccount1718 4 роки тому

      Either I think.

    • @rokettojanpu4669
      @rokettojanpu4669 3 роки тому

      by definition (a_n) is bounded by M if |a_n|=

    • @aadhuu
      @aadhuu 2 роки тому

      @@rokettojanpu4669 if its an increasing sequence we can be sure the lower bound exists and vice versa..

    • @aadhuu
      @aadhuu 2 роки тому

      i mean, if its a decreasing sequence, we can be sure the upper bound exists.

    • @rokettojanpu4669
      @rokettojanpu4669 2 роки тому

      @@aadhuu the question is about definitions of bounded. the answer is that the def of bounded in the video is equivalent to being bounded above and below

  • @omkargharat5235
    @omkargharat5235 7 років тому +1

    Pls use yellow colour instead of red

  • @bilalwajid49
    @bilalwajid49 4 роки тому

    Every convergent sequence is bounded what about is converse? Prove both statements with examples

    • @rokettojanpu4669
      @rokettojanpu4669 3 роки тому

      Not every bounded sequence converges. Take the sequence (-1)^n.

  • @retardednoodle
    @retardednoodle 9 років тому +1

    Thank you!

  • @akshayparulekar4550
    @akshayparulekar4550 9 років тому +1

    I like your curly brackets. :)

  • @Prince_Saxena
    @Prince_Saxena 7 років тому +1

    Sir pls improve your writing..........m confused in words