Introduction to LlamaIndex with Python (2024)

Поділитися
Вставка
  • Опубліковано 11 січ 2025

КОМЕНТАРІ •

  • @alejandro_ao
    @alejandro_ao  2 місяці тому +1

    🔥Join the AI Engineer Bootcamp:
    Hey there.. The second edition of the AI Engineering Cohort is starting soon.
    - Learn with step-by-step lessons and exercises
    - Join a community of like-minded and amazing people
    - I'll be there to personally answer all your questions 🤓
    - The spots are limited since I'll be directly interacting with you
    You can join the waitlist now 👉 course.alejandro-ao.com/
    Cheers!

  • @LookNumber9
    @LookNumber9 5 місяців тому +16

    Yes. More on LlamaIndex please. I so appreciate your clear and thoughtful tutorials. Beautifully done!

    • @alejandro_ao
      @alejandro_ao  5 місяців тому +2

      i appreciate it! absolutely 💪

    • @eric-theodore-cartman6151
      @eric-theodore-cartman6151 4 місяці тому

      Yes please make a whole series, especially the application based on usecases. ​@@alejandro_ao

    • @rembautimes8808
      @rembautimes8808 23 дні тому

      Excellent tutorial watched this video,over several days. Thanks so much for explaining this platform 😊

  • @changed217
    @changed217 5 місяців тому +4

    Thank you so much man, just yesterday I was struggling with the same thing, there is no recent content on llamaindex, everything is outdated. This is a live-saver, please continue this series.

  • @olextech
    @olextech Місяць тому +1

    Thank you for your effort. This is by far the most structured and easy to understand introduction into LlamaIndex / RAG topic.

    • @alejandro_ao
      @alejandro_ao  Місяць тому +1

      really appreciate it! i'm glad it was helpful :)

  • @adil385
    @adil385 3 місяці тому +1

    Been looking at this for a few weeks and this is the perfect start for anyone wanting to understand RAG and llama index. Fantastic video :)

  • @ai-touch9
    @ai-touch9 5 місяців тому +2

    the moment you say good morning, I feel like I woke up on a flight with pilot announcement, Good stuff btw.

  • @janwillemaltink2216
    @janwillemaltink2216 5 місяців тому +1

    always eager to start building things after watching one of your videos. You really have a talent for explaining things super clear and easy .

  • @davidtindell950
    @davidtindell950 5 місяців тому +2

    Works Very Well and very low cost (in pennies per PDF). Further savings by 'Persisting the Index' ... Thank You Yet Again! I own you a whole pot of coffee ! 😄

  • @tamimiYoutube
    @tamimiYoutube 10 днів тому

    Just stumbled on your page, great content! And well done at explaining the concepts very succinctly! Would love to follow your content

  • @IdPreferNot1
    @IdPreferNot1 5 місяців тому +5

    LLamaindex looks like a survivor. Would love to see some of the advanced new features in your coming tutorials.

    • @alejandro_ao
      @alejandro_ao  5 місяців тому +1

      totally agree. i am sure they will be shaping the AI app sphere for a long time

  • @ratral
    @ratral 7 годин тому

    Thank you for a very clear clarification. 👍

  • @tlyoon
    @tlyoon 5 місяців тому +3

    Am considering using llamaindex for my ai application project after viewing your wonderfully done video, which is straightforward, simple and absolutely understandable. I am expecting a follow-up video by you on how to deploy llamaindex online for a realistic entrepreneur setting.

  • @Waseem-f7n
    @Waseem-f7n Місяць тому

    yes please continue with LLam index tutorials. appreciate that

  • @rochedavid1643
    @rochedavid1643 5 місяців тому +1

    Merci beaucoup pour ce contenu de qualité (comme toutes tes vidéos), vivement la suite ! (j'espère que tu aborderas la création de RAG basé sur des agents)

  • @megamind452
    @megamind452 5 місяців тому +3

    I was searching about llamaindex yesterday on your UA-cam channel

  • @BrandonFoltz
    @BrandonFoltz 5 місяців тому

    Excellent as usual! And useful as usual. Thanks and stay cool. 😎

    • @alejandro_ao
      @alejandro_ao  5 місяців тому

      thank you brandon! always a pleasure to see you around!

  • @iacondiego
    @iacondiego 4 місяці тому

    Good video, I have seen few videos that explain this topic well, greetings from Chile

  • @RakshithML-vo1tr
    @RakshithML-vo1tr 4 місяці тому

    Bro literally you are doing such a useful thing please do more videos its very helpful lots of love from student community ❤️

  • @Muzeemkhankamaal
    @Muzeemkhankamaal 2 місяці тому

    Really nice and to the point tutorial.. Thank you.

  • @sunitjoshi3573
    @sunitjoshi3573 4 місяці тому +1

    Nice & articulate. Thanks for putting this out.

    • @alejandro_ao
      @alejandro_ao  4 місяці тому

      I appreciate it :) expect many more to come

  • @somerset006
    @somerset006 4 місяці тому

    Thanks for the up-to-date video on Llama Index! It would have been helpful to explicitly mention the deltas from half a few months back.

  • @thomasthemaker
    @thomasthemaker Місяць тому

    Awesomely information-dense. Thanks man

  • @DevidasBhobe
    @DevidasBhobe 18 днів тому

    U r doing better job than llamaindex vp who reads from a paper in videos

  • @ziggyybr
    @ziggyybr 5 місяців тому +1

    It helped me a lot! Thanks for the video

  • @haiderkhalilpk
    @haiderkhalilpk 5 місяців тому

    Very precise and much much useful!

    • @alejandro_ao
      @alejandro_ao  5 місяців тому

      hey there, thanks! glad to see you around!

  • @PauloRogeriopauloaraxa
    @PauloRogeriopauloaraxa 5 місяців тому

    Excelente explicação como sempre. Parabéns.👏👏👏

  • @AlexCasimirF
    @AlexCasimirF 5 місяців тому +2

    Love your videos!!! Great content here again. One question: in 30:20 where the index gets created locally, what do the subfolders look like? "image_vector_store", "graph_store"... - does this mean the dataloaders would also split a PDF in plain text, graphs, images and then store the respectivbe embeddings in separate folders? Tried it on my own PDFs but could not make much sense of the index files unfortunately...

  • @CaptainBri-ro4lp
    @CaptainBri-ro4lp 4 місяці тому

    Great tutorial!!

  • @user-wr4yl7tx3w
    @user-wr4yl7tx3w 5 місяців тому +6

    i like to learn llamaindex but i wonder if i will just be spreading myself too thin by trying to master both langchain and llamaindex. do you have any advice?

  • @nyceyes
    @nyceyes 3 місяці тому +1

    Their documentation is lacking, so thank you for this. Question: In your code editor, I noticed the hover-over text: "start coding or generate with AI". What code generator service and/or plugin are you using, if you don't mind me asking? 😊 (E.g. GitHub Copilot, etc). Thank you.
    Edit: Ah, it's probably whatever CoLab offers. I was too focused on the LlamaIndex talk to notice the IDE was CoLab. LoL

  • @samuelsztabholz2419
    @samuelsztabholz2419 5 місяців тому

    Très bonne présentation. Merci

  • @akshaymenon5088
    @akshaymenon5088 5 місяців тому +3

    Can this setup be implemented within a protected infrastructure? I have sensitive data that I don't want to leave my network

  • @Jay-wx6jt
    @Jay-wx6jt 5 місяців тому

    Their recent documents are really really good

  • @sarveshsawant7232
    @sarveshsawant7232 2 місяці тому

    This is perfect

  • @empfehlbar
    @empfehlbar Місяць тому

    Hi Alexjandro! This introduction is really good! Which is the next video in this series about Llamaindex? (I saw you have a lot of interesting videos)

    • @alejandro_ao
      @alejandro_ao  27 днів тому +1

      the one coming next week is about data loading :)

  • @Pingu_astrocat21
    @Pingu_astrocat21 5 місяців тому +1

    Alejandro Thank you for the clear introduction to LlamaIndex. Instead of using OpenAI API , how can we use a model from hugging face?

  • @trealwilliams1563
    @trealwilliams1563 4 місяці тому

    Thank You✊🏾💎

  • @rmjjanssen2645
    @rmjjanssen2645 5 місяців тому

    Great video. So if I understand correctly, the code example only shows the parsing into documents. So no nodes, embedding/vectorising and persistent storage in a vector DB? Any observations on weak/ strengths in comparison with langchain? The parts upto vector db and the parts from user upto vector DB

  • @gazorbpazorbian
    @gazorbpazorbian 3 місяці тому

    Great video! Keep em coming! Quick question. When you load documents can it get the documents recursively inside data? Like if there are more folders inside folders?
    Is there any limit to loading documents? Any aditional advice on the loading documents?
    What if a document has many pages and it has a footer and a header with repetitive content? Could that affect negatively the retrieval?

  • @J.jocker
    @J.jocker 5 місяців тому +1

    what 's the different between (llamaindex for chatbot creation) and (langchain +streamlit ...for pdf bot(the video you did last time)
    which of them is more suitable if I want to create a chatbot for a company

    • @alejandro_ao
      @alejandro_ao  5 місяців тому +1

      there is a bit of overlap between the two. but you really can't go wrong with either of them. they are both very reliable and have a great community.
      it seems to me that llamaindex is focusing a lot more on the data ingestion side and langchain is going more for them overall orchestration of the components. at least for now.
      the good news is that you can use both :) most of the paradigms are compatible, so you can take advantage of the strengths of each one.
      in the meantime, i recommend you focus on one of the two and then start implementing features from the other one as needed. you will soon get the core concepts and be able to choose which one is better suited fr a specific project 👍

  • @GP-qs6cq
    @GP-qs6cq 5 місяців тому +1

    can i setup llamIndex on my own server? i dont want to use api or don't want to send data to other's server

  • @jacobsmith7877
    @jacobsmith7877 5 місяців тому

    Looking forward to Agentic RAG system build with function calling and etc

  • @limjuroy7078
    @limjuroy7078 3 місяці тому

    Interesting~

  • @yaseenal-wesabi5964
    @yaseenal-wesabi5964 5 місяців тому +1

    Should we pay for the openai api key? And How

  • @encianhoratiu5301
    @encianhoratiu5301 4 місяці тому

    Can you make a video where you discuss how you can test a RAG?

  • @acharafranklyn5167
    @acharafranklyn5167 5 місяців тому

    Welldone boss i almost thought you stole it from Krish Naik but your adding the lamaparse made the difference

    • @alejandro_ao
      @alejandro_ao  5 місяців тому +1

      thanks mate! i'm pretty sure both of us took it from the official docs, tbh 😅
      but yeah, i wanted to give a more wholesome presentation of all their offer, not only the open-source part :)

  • @SamiUllah-xv8ft
    @SamiUllah-xv8ft 5 місяців тому +1

    Awesome content as usual

    • @alejandro_ao
      @alejandro_ao  5 місяців тому +1

      hey sami 🙌

    • @KumR
      @KumR 5 місяців тому

      @@alejandro_ao 🎉

  • @CaiqueBikeBJJ
    @CaiqueBikeBJJ 4 місяці тому

    Do you already have a video how to use Llama-Index with local llama3 instead of ChatGPT? Thanks!

    • @alejandro_ao
      @alejandro_ao  4 місяці тому

      Not yet, but coming up next week!

  • @AMR2442
    @AMR2442 5 місяців тому

    I’m waiting for the local install video.

  • @_wallykhalid
    @_wallykhalid 4 місяці тому

    Really interested to see a fully open source version of this with hugginface embeddings and models.

    • @alejandro_ao
      @alejandro_ao  4 місяці тому

      coming up!! sorry been super busy with the cohort 😅

  • @KumR
    @KumR 5 місяців тому

    Hey AO.. Looks like the default LLM is being used which is Da Vinci. Can we upgrade to GPT4o?

    • @alejandro_ao
      @alejandro_ao  5 місяців тому

      hello there, absolutely. for this particular example, you can just add the model param to the query engine:
      ```python
      from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
      from llama_index.llms.openai import OpenAI
      documents = SimpleDirectoryReader("data").load_data()
      index = VectorStoreIndex.from_documents(documents)
      query_engine = index.as_query_engine(llm=OpenAI(model="gpt-4o-mini"))
      response = query_engine.query("What is the bootcamp about?")
      print(response)
      ```
      btw, i am pretty sure that the default model that llamaindex uses with openai is gpt-3.5-turbo. look: github.com/run-llama/llama_index/blob/41643a65bc89cfdb3eb0c11b4f8cb256b02aa21c/llama-index-integrations/llms/llama-index-llms-openai/llama_index/llms/openai/base.py#L78

  • @alainherreman3685
    @alainherreman3685 3 місяці тому

    Merci !

  • @sam-uw3gf
    @sam-uw3gf 5 місяців тому

    can do langchain tutotrial with open source I was searching and got none in case any please give me the link

  • @alejandro_ao
    @alejandro_ao  5 місяців тому +2

    i feel like this shirt makes it look like i'm at the beach

  • @GabrielVilladiegoOchoa-nt1xc
    @GabrielVilladiegoOchoa-nt1xc 5 місяців тому

    Excelente

  • @VR-fh4im
    @VR-fh4im 4 місяці тому

    You should become a professor it will benefit thousands of students in your country. Well taught.

    • @alejandro_ao
      @alejandro_ao  4 місяці тому

      i hope to do that one day! thank you, it means a lot!

  • @SonGoku-pc7jl
    @SonGoku-pc7jl 5 місяців тому

    thanks

  • @AbdulaiJalaldin
    @AbdulaiJalaldin Місяць тому

    please can you make a tutorial on langgraph

  • @TriconDigital
    @TriconDigital 3 місяці тому

    hoping for video #2

    • @alejandro_ao
      @alejandro_ao  2 місяці тому +1

      finally here, sorry lots of work!!

  • @adityahpatel
    @adityahpatel 5 місяців тому

    It is vague at this point - 12:50 "nodes are interconnected creating a network of knowledge". This is very old technique. Obviously embeddings of chunks semantically close to each other will fall in the same area in embedding space. So they are interconnected..How is this any different from chroma db or ANY xyz other vector database in the world? What is different here!

  • @Rits1804-l4r
    @Rits1804-l4r 4 місяці тому

    brother please make a video on RAG (by using the llama index), I have done it already if you need I can send you, so you can save your time for research, Please explain it in your language , please use open source model instead open ai

  • @romanemul1
    @romanemul1 4 місяці тому

    LlamaIndex is a commercial product, with pricing based on usage... Ok bye. Thanks for a video anyway.