Cálculo del límite que es igual al número e

Поділитися
Вставка
  • Опубліковано 8 лис 2024

КОМЕНТАРІ • 101

  • @matematicaconjuan
    @matematicaconjuan  2 роки тому +16

    Por si quieres invitarme a un café ☕
    www.paypal.com/paypalme/matematicasconjuan 🤍

  • @fernandomo7459
    @fernandomo7459 2 роки тому +82

    Buenas noches, Juan. ¿Es posible que se haya equivocado en el siguiente punto? En el minuto 6.55, ¿no sería límite cuando x tiende a infinito de 1/(1+1/x)? El resultado también es igual a 1. Si es incorrecta mi apreciación, ruego me disculpe de antemano. Muchas gracias por su contenido.

    • @matematicaconjuan
      @matematicaconjuan  2 роки тому +97

      Fernando, tienes razón!! Por suerte para mí, la igualdad se sigue cumpliendo, es decir, ambos límites son iguales. Habrá una segunda versión del vídeo en donde todo esté impoluto👌

    • @freddyflorescondori9741
      @freddyflorescondori9741 2 роки тому +2

      @@matematicaconjuan ,

    • @danielsanbsas
      @danielsanbsas Рік тому +1

      achica el panico
      😂😂😂😂

    • @rivasu1030
      @rivasu1030 11 місяців тому +7

      Estimado Juan, aparte del comentario anterior, he notado en varios videos que al simplificar ocupa el término "cancelar". En rigor, no es el término adecuado al realizar dicha operación. Se que a veces lo utilizamos como muletilla sin querer. Solo hago este comentario, en virtud de la pureza de la segunda versión que prometió.
      Termino felicitándolo por su contenido y por la pasión que trasmite en sus videos por esta hermosa disciplina.
      Saludos.

  • @joseantoniogimenezcurto1949
    @joseantoniogimenezcurto1949 2 роки тому +8

    Pero el número e está implícito en la definición de logaritmo neperiano, con lo que es fácil obtenerlo de ahí. Lo bonito sería obtener e sin acudir a los logaritmos neperianos

  • @redash1157
    @redash1157 2 роки тому +5

    Excelente video, mientras mas atención le pongo a las matemáticas me doy cuenta que son muy fascinantes

  • @juanjosegallomejia9662
    @juanjosegallomejia9662 2 роки тому +6

    Una forma amena y elegante de llegar a e
    Muchas gracias, estoy encantado con sus clases de matemáticas

  • @El_Girasol_Fachero
    @El_Girasol_Fachero 2 роки тому +8

    Ese numero es una joyita en las matemáticas 💎
    Saludos Profe Juan, buen video

  • @pablojavier7965
    @pablojavier7965 2 роки тому +14

    Pero ¿podrías resolverlo como lo resolvió en su época Bernoulli? (Me imagino que como todavía no existía el número “e” tampoco se sabía de propiedades neperianas)

    • @matematicaconjuan
      @matematicaconjuan  2 роки тому +9

      Ya tengo ese vídeo. Ayer mismo lo publiqué

    • @mcg5617
      @mcg5617 2 роки тому +1

      @@matematicaconjuan
      Me puede dar el link pf

  • @angeleduardoloborojas4626
    @angeleduardoloborojas4626 25 днів тому

    Juan muchas gracias por tu contenido. He aprendido mucho y recordado otras tantas. Este límite es épico

  • @patricia3259
    @patricia3259 2 роки тому +5

    Hola Juan, excelente demostración!!!

  • @gmdgfp8972
    @gmdgfp8972 2 роки тому +1

    Complemento del video anterior explicando el número e del interés compuesto. Gracias Juan

  • @marcoscampos8370
    @marcoscampos8370 2 роки тому +3

    7:29 ahí podría poner e elevado a ambos miembros y que me quede
    e^(ln y) = e^1
    e^ln y = y
    e^1 = e
    y = e

  • @raulsantinolopezrodriguez8349
    @raulsantinolopezrodriguez8349 10 місяців тому

    Estoy chavo! Me falta aún más práctica!
    Gracias, Profe Juan

  • @mcg5617
    @mcg5617 2 роки тому +4

    Está utilizando el color anaranjado para demostrar que el color anaranjado es anaranjado
    Pero si no sabe qué es color anaranjado ¿cómo lo demuestra?
    Usa log base e para demostrar la definición de e
    Pero si no conoce e ¿cómo resuelve el límite?

    • @Gooonzaaa
      @Gooonzaaa 3 місяці тому +1

      Mira de nuevo el video, creo que falta comprensión auditiva y visual

  • @jorgepinonesjauch8023
    @jorgepinonesjauch8023 2 роки тому +11

    Hay errores Juan, si quieres demostrar la existencia del número "e" no puedes aplicar la propiedad del logaritmo neperiano cuya base es "e" ya que es eso lo que se tiene que probar...

    • @Gooonzaaa
      @Gooonzaaa 3 місяці тому +4

      En qué momento se quiere demostrar la existencia de e? Solo se demuestra porque ese límite tiene por resultado e

    • @juanestebanhe10
      @juanestebanhe10 18 днів тому

      @@Gooonzaaa debes estudiar bien el cálculo amigo, fijo eres ingeniero y el fanatismo por el profe juan no te deja pensar con claridad

  • @caterinsierra1583
    @caterinsierra1583 Місяць тому

    Por fin lo entendí, muchas gracias enserio

  • @JuanRodriguez-or7pr
    @JuanRodriguez-or7pr 2 роки тому +2

    Hola maestro gracias a usted aprendo matematicas un saludo📖

  • @ProfBalegnoMazzini
    @ProfBalegnoMazzini 7 місяців тому

    Profe, permítame hacer un comentario (si es que no lo han hecho ya) la regla que aplica en el min 4:19 se llama Regla de Bernoulli - L'Hospital. Fuente: Stewart, Cálculo de una variable - 7ma Edición, pág. 310.

  • @SalmonAhumado
    @SalmonAhumado Рік тому +1

    gracias Juan, me alegras los días✨

  • @g4t4nk0
    @g4t4nk0 2 роки тому

    Creo mejor decir "uno partido equis" o "uno partido por equis", que "uno partido de equis" ("de equis" suena mucho a diferencial de equis y puede confundir). Gracias, Juan, eres muy buen profesor, por eso te sigo.

  • @LuisFernandoDiazCuev
    @LuisFernandoDiazCuev 2 роки тому

    y aplicando en un ejemplo practico en intereses por un préstamo de el banco o algo similar esta relacionado.

  • @DavidRMorenoS
    @DavidRMorenoS 2 роки тому +3

    hola, en Colombia le decimos a ln (logaritmo natural)

  • @10minticaq51
    @10minticaq51 6 місяців тому

    El razonamiento de Euler probablemente seguiría estos pasos:
    Comenzar con la expresión (1 + 1/n)^n.
    Aplicar la propiedad de las potencias: (1 + 1/n)^n = (1 + 1/n) * (1 + 1/n) * ... * (1 + 1/n) (n veces)
    Reescribir esto como: (1 + 1/n) * (1 + 1/(n-1)) * (1 + 1/(n-2)) * ... * (1 + 1/2) * (1 + 1/1)
    Observar que a medida que n crece, cada uno de los factores (1 + 1/k) se acerca a 1, ya que 1/k se vuelve cada vez más pequeño.
    Utilizar la propiedad de que el producto de números cercanos a 1 también se acerca a 1.
    Concluir que a medida que n tiende a infinito, el producto (1 + 1/n) * (1 + 1/(n-1)) * ... * (1 + 1/1) tiende a un valor constante.
    Definir este valor constante como "e", sin necesidad de relacionarlo inicialmente con los logaritmos.
    De esta manera, Euler pudo establecer la definición de e como el límite de (1 + 1/n)^n, sin tener que recurrir a las propiedades de los logaritmos neperianos.
    El énfasis estaría en analizar el comportamiento de los factores individuales y del producto en conjunto, a medida que n crece, sin introducir la función logarítmica.

  • @danielsanbsas
    @danielsanbsas Рік тому +2

    ¿y cual es el algoritmo para calcular el ln e ?

  • @larrypabon
    @larrypabon 2 роки тому

    2:22 para bajar esa x, te falta otro par de paréntesis, luego de escribir el Ln, osea
    Ln [(1+1/x)^x] ahí si puedo sacar la x como factor de un producto...

  • @KR-zf7vt
    @KR-zf7vt 2 роки тому +2

    Que fue primero, el "ln" o el valor de "e"??

    • @matematicaconjuan
      @matematicaconjuan  2 роки тому

      Echa un vistazo a este vídeo (como apareció el número e)
      ua-cam.com/video/uM2b13a1SXo/v-deo.html

  • @armandoquiroz741
    @armandoquiroz741 2 роки тому +1

    Justo estoy viendo ese tema. Eres un Dios Juán, tienens algo para unirse como ser miembro de tu canal o algo así?

  • @alexturpomendoza3135
    @alexturpomendoza3135 2 роки тому +1

    Profesor me podría ayudar con este ejercicio por favor
    En el estudio del movimiento oscilatorio, se calcula la velocidad del cuerpo con la siguiente fórmula.
    V= A^{X} \sqrt{B^{2}-C }V=AXB2−C​
    Si A es tiempo y C es área, calcule x.

  • @lasmatesdelamor4287
    @lasmatesdelamor4287 2 роки тому +2

    Excelente demostración Juan, me lo marcaron pero no sabía cómo se resuelve

  • @anamariagonzalezmolina5535
    @anamariagonzalezmolina5535 Рік тому +1

    A ver si por aquí alguien me ayuda. ¿Cuándo hablamos de logaritmo neperiano nos referimos al logaritmo natural? ¿Son en realidad la misma cosa o no lo son? ¿Es cierto que el logaritmo neperiano no tiene una base específica porque es el cociente de dos logaritmos? ¿Qué ocurre aquí? :)

  • @GMan958
    @GMan958 2 роки тому +2

    Juan el problema es que estas asumiendo algo ya conocido..la 1era persona que resolvio esto tuvo que haberlo hecho de otra manera ya que desconocia que la respuesta era el #e y no tomaria el Neperiano de la funcion. Podrias resolverlo de la manera original? Gracias.

    • @brauliogabriel1740
      @brauliogabriel1740 2 роки тому

      Ya lo hizo lo subio hace nada

    • @matematicaconjuan
      @matematicaconjuan  2 роки тому +1

      Echa un vistazo a este vídeo (de dónde viene el número e)
      ua-cam.com/video/uM2b13a1SXo/v-deo.html

    • @GMan958
      @GMan958 2 роки тому

      Entiendo como nace el # y su aplicacion al interes compuesto...lo que estaba esperando era ver la solucion a lim x->inf (1+(1/x))^x en el video solo llegas a x = 3. Debe haber una manera de generalizar la solucion...

  • @luisoswaldoramirezzevallos3049
    @luisoswaldoramirezzevallos3049 2 роки тому

    Buenas tardes doctor con mucho respeto... como se resolvía este ejercicio antes que L hospital diera sus teorías.

  • @mariaangelesescribanojimen8417

    Ir qué ln y no cualquier otra base??

  • @ventanadelrey2450
    @ventanadelrey2450 2 роки тому +1

    Muy interesante Juan😊

  • @SuperGeminis72
    @SuperGeminis72 2 роки тому +4

    Esta demostración está mal. Explicar que ese límite da el número de Euler utilizando logaritmo neperiano en la demostración es como querer probar que primero está el huevo y después la gallina empezando la demostración contando que había una gallina que puso un huevo.

    • @matematicaconjuan
      @matematicaconjuan  2 роки тому +1

      Aquí explico de dónde viene el número e, tal vez te va a interesar más
      ua-cam.com/video/uM2b13a1SXo/v-deo.html

  • @thebrianshitzs9152
    @thebrianshitzs9152 2 роки тому +1

    Nadie:
    2:50 Un aldeano cualquiera en Minecraft..

  • @yazminmartinez6616
    @yazminmartinez6616 2 роки тому +1

    Aun muy avanzado para mi profe Juan

  • @MolochJanus
    @MolochJanus 2 роки тому

    6:31...estimado señor es importante recalcar que eso se puede hacer gracias a que es un lìmite!!!...de lo contrario no es llegar y tachar bro.

  • @JorgePazNaveiro
    @JorgePazNaveiro 2 роки тому

    Únicamente un comentario, se ha utilizado el número e un par de veces, en el la exponenciación y en la derivada. No es incorreco desde el punto de vista analítico pero ya suponemos que el límite existe y tiene ese valor. Por otra parte, la propiedad de que el límite del logaritmo es igual al logaritmo del límite es muy fuerte pero no se puede aplicar de forma general, también se está asumiendo la convergencia de ese límite.

    • @matematicaconjuan
      @matematicaconjuan  2 роки тому +1

      Echa un vistazo a este vídeo (cómo apareció el número e), tal vez te interesa.
      ua-cam.com/video/uM2b13a1SXo/v-deo.html

  • @hectorlazarin4423
    @hectorlazarin4423 2 роки тому +1

    excelente explicacion

  • @a0z9
    @a0z9 2 роки тому +2

    Siempre llevar las cosas al límite tiene sus consecuencias.. e tan cerca de 3 y tan lejos de 2

    • @ricardourrea9581
      @ricardourrea9581 2 роки тому

      Neruda escribió ,tan corto el amor y tan largo el olvido.

  • @rogerlholguingarcia4736
    @rogerlholguingarcia4736 2 роки тому +1

    Pero, si usamos log en base 10, saldría igual. ¿cuál es el motivo de poner ln?

    • @yaridperez6571
      @yaridperez6571 2 роки тому

      Fíjate bien. La derivada de Z es diferente si fuera en base 10

    • @rogerlholguingarcia4736
      @rogerlholguingarcia4736 2 роки тому

      @@yaridperez6571 Saldría 10, osea, si usamos cualquier logaritmo saldrá el valor de su base

    • @yaridperez6571
      @yaridperez6571 2 роки тому +1

      @@rogerlholguingarcia4736 no, saldría 1/x ln 10, esa es la derivada de log 10

  • @GracielaRodriguez-x4d
    @GracielaRodriguez-x4d 6 місяців тому

    Que brille la luna que brilla el sol que brilla La calva del profesor XD

  • @oscar-zb2op
    @oscar-zb2op 2 роки тому +1

    No sé exactamente qué ha demostrado. El número e se define por ese límite, no hay nada que demostrar

  • @mariasolano-di2pf
    @mariasolano-di2pf 4 місяці тому

    Y SI LA FUCION NO ESTA ELEVADO A X SE RESUELVE IGUAL ??

  • @mariajoseelizalde5071
    @mariajoseelizalde5071 Рік тому

    geniazoooooooooooooooooooo

  • @haitaelpastor976
    @haitaelpastor976 Рік тому

    ¿Alguien ha visto por ahí a mi cerebro? Salió huyendo entre alaridos y no lo encuentro.

  • @luisfelipesalazarcaicedo2863
    @luisfelipesalazarcaicedo2863 2 роки тому +2

    Profe Juan , su demostración esta mal hecha al utilizar ln implícitamente está usando el número e , la demostración del límite tiene otra técnica ! Lo remito al libro de cálculo de Juan Viedma ! Ahí encontrará una bella demostración ! Que no es nada fácil !!

  • @catalinagutierrez8057
    @catalinagutierrez8057 Рік тому

    Excelente

  • @MsManfred2011
    @MsManfred2011 5 місяців тому

    Como dicen más abajo, si usas logaritmo base diez, el resultado sería 10... Así aunque el vídeo esta bueno por todo el razonamiento, la conclusión no me parece correcta...

  • @johnlaxodsfinter6151
    @johnlaxodsfinter6151 2 роки тому

    Lo único que he entendido bien es que hay que manipularse bien el miembro. No sé qué habrá querido decir...

  • @thebrianshitzs9152
    @thebrianshitzs9152 2 роки тому

    5:17 será buen momento de avisarle que no me se las tablas¿🤔😬

  • @ricardourrea9581
    @ricardourrea9581 2 роки тому

    Si tienes que aplicar L' Hopital, estamos hablando de soluciones ya a nivel universitario.

  • @treicy80
    @treicy80 2 роки тому +3

    como puedes usar ln si aun no conoces e?

    • @soriel_x1654
      @soriel_x1654 2 роки тому +1

      El lo que no sabe es cuanto da el límite pero claramente sabe todo sobre e. El video no es para calcular e, es para demostrar porque ese límite es igual a e

    • @ricardourrea9581
      @ricardourrea9581 2 роки тому +1

      @vanadio Se hace trampa al derivar el log neperiano y conocer su resultado.

    • @brauliogabriel1740
      @brauliogabriel1740 2 роки тому

      Asi no se descubrió el numero e. Juan subio un video hace nada en el que muestra comp se descubrio el numero

  • @chemsdinesidha5254
    @chemsdinesidha5254 Рік тому

    Wow !

  • @DanielLopez-yg3zd
    @DanielLopez-yg3zd Рік тому

    muy bien

  • @sabasmoreno6705
    @sabasmoreno6705 Рік тому

    e=2^(1/ln2)

  • @matiasjara4102
    @matiasjara4102 7 місяців тому

    el brillo de tu calva me ha iluminado.....

  • @YAZIT221
    @YAZIT221 11 місяців тому

    10:00

  • @ramoncuetos5619
    @ramoncuetos5619 2 роки тому

    Muy suelto juan

  • @Saiyan2099
    @Saiyan2099 Рік тому

    Alguien me puede explicar por qué pudo mover ln al lado de límite Justo en el minuto 1:38
    No entendí :(

  • @tesojiram
    @tesojiram Рік тому

    🚴🏆

  • @soriel_x1654
    @soriel_x1654 2 роки тому +2

    Te comiste el uno de arriba

    • @matematicaconjuan
      @matematicaconjuan  2 роки тому

      Soriel, efectivamente, en 6:55 . Por fortuna no he escrito ninguna mentira, ya q los dos límites representan a la misma cantidad...pero claro, yo no quería eso. Muy pertinente tu indicación. Habrá una segunda versión mejorada😃

  • @juanlatorre9390
    @juanlatorre9390 2 роки тому

    Interesante vídeo, lo único es que para determinar la derivada del logaritmo se utiliza precisamente el límite que pretendes demostrar... La 🐟 que se muerde la cola😜. Es como calcular el límite cuando x tiende a 0 de senx/x usando L'Hopital.

  • @mateohernandezlopez460
    @mateohernandezlopez460 2 роки тому

    Pero 1/1/x es igual a 1/x no 1 hablo del minuto 3:00

  • @alexleon4712
    @alexleon4712 2 роки тому

    Profesor x ...

  • @fandelartetismodos
    @fandelartetismodos 6 місяців тому

    TE LA AS SACAO

  • @IsabelRodriguez-yz4kb
    @IsabelRodriguez-yz4kb 2 роки тому +1

    Este profe me estresa

  • @YAZIT221
    @YAZIT221 11 місяців тому

    1000:00000

  • @carlosguerre4188
    @carlosguerre4188 2 роки тому

    J

  • @jacintohb2437
    @jacintohb2437 2 роки тому

    Hola Juan, demostración quizás buena para quienes dominan las matemáticas, pero muy antididáctica para los que no.

  • @YAZIT221
    @YAZIT221 11 місяців тому

    10000:000000:0000