matrix choose a matrix

Поділитися
Вставка
  • Опубліковано 7 лис 2024

КОМЕНТАРІ • 53

  • @r75shell
    @r75shell 2 роки тому +14

    This is the Peyam I like

    • @timothyaugustine7093
      @timothyaugustine7093 2 роки тому

      Why? What happened? 😐

    • @r75shell
      @r75shell 2 роки тому

      @@timothyaugustine7093 Initially I subscribed to Payam when his videos were about some crazy stuff like half-derivative and etc. And this video fits perfectly.

    • @MarcusCactus
      @MarcusCactus 2 роки тому +1

      There are two types of Peyam videos. Those for learned curious amateurs, like this one, and those for common high-school-level learners.

  • @MrQwefty
    @MrQwefty 2 роки тому +13

    This is getting craaaazy!
    Might I suggest something even crazier... The matrixth derivative!?

  • @iabervon
    @iabervon 2 роки тому +25

    I wonder if this actually gives the x^By^(A-B) coefficient in the expansion of (x+y)^A in some sense.

    • @drpeyam
      @drpeyam  2 роки тому +11

      Would be interesting to figure out

  • @Icenri
    @Icenri 2 роки тому +11

    Next step should be integral from 0 to matrix!

  • @MichaelRothwell1
    @MichaelRothwell1 2 роки тому +21

    I was quite flabbergasted by the idea of matrix choose matrix. Then I wondered if you would be using diagonalisation or the Gamma function...
    BTW, was it just a coincidence that D=A-B?

    • @drpeyam
      @drpeyam  2 роки тому +8

      I think it’s a coincidence :)

  • @ahmadkalaoun3473
    @ahmadkalaoun3473 2 роки тому +5

    Very interesting :)
    Please can you share the link to the video where you prove that statement about commutative matrices?

  • @platosbeard3476
    @platosbeard3476 2 роки тому +3

    Those matrices are going places!

  • @joefarrow1599
    @joefarrow1599 2 роки тому +1

    Did you define this operation yourself? Or is it used in the literature?

  • @reader4795
    @reader4795 2 роки тому +2

    Great material :)

  • @BrutishLearner4
    @BrutishLearner4 2 роки тому +1

    Awesome video! :) Really interesting. Is there any applications of this somewhere? For example, is it part of some well-known proofs of various theorems, maybe it’s used somewhere in applied maths or physics? Also is there any intuition one can apply to this in a similar way as the usual n choose m? Also keen to see more stuff like this, it’s really interesting

    • @drpeyam
      @drpeyam  2 роки тому +1

      Quantum mechanics probably hahaha

  • @derwolf7810
    @derwolf7810 2 роки тому +1

    There are "(n choose k)" ways to choose an (unordered) subset of k elements from a fixed set of n element.
    I wonder, is there something similar for matrices... so some kind of realationship of sth for which that matrix is a value for?

  • @MarcusCactus
    @MarcusCactus 2 роки тому

    Does the order of < B!(A-B)! > have anything to do with the order of < A! (blabla!)^-1 > ?

  • @cameronspalding9792
    @cameronspalding9792 Рік тому

    When you take the factorial of a matrix, I assume it’s well defined provided the eigenvalues are not negative intigers

  • @mimithehotdog7836
    @mimithehotdog7836 2 роки тому

    Now this is epic

  • @cameronspalding9792
    @cameronspalding9792 Рік тому

    @ 4:10 I believe you made a bracketing error

  • @MrRyanroberson1
    @MrRyanroberson1 2 роки тому +1

    so, you've done matrix^matrix, what about tetration? 3^^3 = 3^27, and all. exponentiation of matrices i can understand is an extension of the exponential, which is definable via polynomials, however for tetration i think it is generally impossible to have a matrix anywhere other than the base; still it would be cool to see what M^^4 is, for some matrix M, you would probably want to use B (from this video) since tetration explodes really fast for bases larger than 2

    • @drpeyam
      @drpeyam  2 роки тому +1

      Very interesting, thank you!

  • @noahtaul
    @noahtaul 2 роки тому

    In B, should the top-left entry be 6?

  • @halglick
    @halglick Рік тому

    I got complex eigenvalues for B. did I mess up somewhere?

    • @drpeyam
      @drpeyam  Рік тому

      Possibly

    • @halglick
      @halglick Рік тому

      @@drpeyam huge fan :D. By the way, I played around with B and found out that it works when you use 4 instead of -4, but I am probably being nit-pickey.

  • @tanmaymishra9576
    @tanmaymishra9576 Рік тому

    only for AB=BA matrices

  • @erikroberts8307
    @erikroberts8307 2 роки тому

    Isn't (0)Choose(0) = 1? Shouldn't the results of (D)Choose(E) be written as: [15 1; 1 6], instead of [15 0: 0 6]?

    • @drpeyam
      @drpeyam  2 роки тому

      You only do the choosing on the diagonal entries, the non diagonal ones are 0 :)

    • @erikroberts8307
      @erikroberts8307 2 роки тому

      @@drpeyam okay, thanks 😊

  • @theproofessayist8441
    @theproofessayist8441 2 роки тому +1

    Wonder what taking a selection of a permutation would be like? hmmmm!

  • @mathaddict9973
    @mathaddict9973 2 роки тому

    This is crazier than the i’th derivative, (i=sqrt(-1)) lol, love it

  • @JeremyGluckStuff
    @JeremyGluckStuff 2 роки тому

    I wonder what this could be used for.

  • @PitiwatKit
    @PitiwatKit 2 роки тому +3

    First time i see this thing ....

    • @goblin5003
      @goblin5003 2 роки тому +2

      Agreed, this is such an original idea

  • @55mikeburns
    @55mikeburns 2 роки тому +2

    Neat. But is it applicable to any real world problems?

    • @drpeyam
      @drpeyam  2 роки тому +4

      Quantum mechanics

  • @francescaerreia8859
    @francescaerreia8859 2 роки тому

    “…for diagonal matrices, D choose E, that’s just the choosing part on the eigen values”. how do we know this?

    • @drpeyam
      @drpeyam  2 роки тому +1

      Because D^n is just the eigenvalues to the n th power

    • @francescaerreia8859
      @francescaerreia8859 2 роки тому

      @@drpeyam sorry, what? I knew that, but how does that relate to this?

    • @drpeyam
      @drpeyam  2 роки тому +2

      Well a factorial is a gamma function which is a power series, which is a sum of D^n

  • @MrRyanroberson1
    @MrRyanroberson1 2 роки тому

    actually this makes me wonder
    since out of all values for 1/gamma(x), the only zeroes are at negative integers, doesn't this mean you can define things like... 2 choose 8.5, and it won't be zero, even though it is total nonsense (in terms of its origin)? i don't know why this is something i only noticed during THIS video

    • @drpeyam
      @drpeyam  2 роки тому +1

      Of course you can define 2 choose 8.5

  • @kiit8337
    @kiit8337 2 роки тому +1

    Miss ur bunny 🐰.. 😙🥺🥺

    • @drpeyam
      @drpeyam  2 роки тому +1

      Same 🥺🥺

  • @dougr.2398
    @dougr.2398 2 роки тому

    Your matrix of matrices?

  • @selfification
    @selfification 2 роки тому +1

    Don't you need to worry about the degeneracy of the matrices to apply this trick?

  • @milossidjak2019
    @milossidjak2019 2 роки тому +1

    Understood nothing.

  • @FrankACai
    @FrankACai 2 роки тому

    矩陣真是煩人,暈了。