En el apartado a) yo cambié la fila 1 por la fila 2 y al revés y dividí por 4 para tener un 1 como pivote pero creo que eso no se puede hacer verdad? Es decir que puedo sustituir una fila por una combinación lineal del resto pero solo dividir por un número una fila o columna no se puede?? 5:37
Hola Andrés! Primero de todo, muchas gracias por tus vídeos! Quería preguntar si lo de "pivotar con los elementos de la diagonal" es algo que podemos generalizar a la hora de calcular la inversa de una matriz por Gauss-Jordan :)
Con esta forma también se podría saber si tiene inversa desde el principio no? Calculas Sarrus el determinante y si da distinto de 0 y sigues con el ejercicio, sino lo dejas como no existente, no?
excelente vídeo , solo tengo una pregunta : en el primer ejercicio de orden 2 puedo empezar a buscar la diagonal 1 en ves de empezar a buscar los ceros? vi que usted empezó buscando el cero en la segunda fila y quiero saber si se puede hacer lo contrario. gracias ;)
6 років тому+1
Muchas gracias. Sin ningún problema. Siempre que consigas la matriz identidad en el bloque de la izquierda, habrás conseguido la inversa en el de la derecha, independientemente del orden que sigas.
Por que a mi me han dicho que para calcular la inversa de una matriz no puedes multiplicar la fila que quieres cambiar, solo puedo multiplicar la fila que hace que cambie ya sea por una fracción o lo que haga falta para obtener el resultado que quiero
Hola !!!!!! Tengo una duda y es que si se puede hacer lo que se quiera a una fila para conseguir lo que queremos ? , un saludo !! :)
4 роки тому+1
Las transformaciones válidas son multiplicar las filas por números (distintos de cero) y sumarle/restarle otras filas multiplicadas por números (distintos de cero). No puedes por ejemplo, multiplicar filas o hacer la potencia de una fila.
Tengo una pregunta en la matriz 3x3 cuando haces 0s con el segundo pivote el de la posición fila 2 columna 2 , es mejor hacer 0s debajo de la diagonal y luego encima o si vemos que es fácil hacer un 0 encima del pivote lo hacemos muchas gracias !!
4 роки тому
Debes hacer ceros por debajo y por encima del pivote. Lo puedes hacer en un solo paso o en dos, como quieras. Llegarás al mismo resultado.
Si tengo una matriz A5x5 y se le realizan una serie de operaciones elementales y la matriz que resulta es B y me da los valores de esta última. Me pide que averigue la matriz reducida de A. Cuándo se aplica la identidad?
6 років тому
No acabo de entender tu duda, pero el objetivo de Gauss-Jordan es conseguir siempre la matriz identidad a la izquierda por transformaciones elementales. Si lo consigues, el bloque que te queda a la derecha es la inversa.
URGENTE!!! Excelente vídeo muchas gracias, amigo cuando la última fila de 0 ¿ se puede hacer la demostración AA^1=I ? O ¿No se hace nada? es que me lo piden en un ejercicio y no se que hacer, gracias espero su respuesta.
Tal y como indico en el vídeo, en el caso de que obtengas una fila de ceros en el bloque de la izquierda, va a ser imposible obtener la matriz identidad en dicho bloque. Cuando esto ocurre quiere decir que la matriz no es invertible o no tiene inversa. En otras palabras, quiere decir que dada una matriz A no va a existir ninguna matriz (la que llamaríamos A^(-1)) de forma que se cumpla A*A^(-1)=I. Por tanto no se puede hacer la demostración que dices, simplemente, porque la matriz A^(-1) no existe. Espero haberte ayudado.
Hola. Por casualidad en algún video explicas los sistemas lineales equivalentes?
6 років тому+1
Te paso el link a la lista de reproducción de sistemas donde los resuelvo por Gauss y por Rouché-Cramer. Sistemas de ecuaciones lineales: ua-cam.com/play/PLNQqRPuLTic_sF462dINa6bBtcx2uix7w.html
En la uba, ciencias economicas de argentina, sumar y restar filas en una matriz es el metodo de gauss, y nos enseñan otro metodo de gauss jordan, con pivotes. En youtube no puedo encontrarlo..
+Nathaly Navas Me alegro. En estos días voy a subir al canal cómo calcular la inversa mediante determinantes (el método de la matriz adjunta traspuesta)
Andres como se llama el ulltimo metodo que resolviste??
7 років тому
En realidad este método no tiene un nombre específico. Personalmente, para referirme a él, lo llamo el método de completar la matriz inversa con un sistema de ecuaciones. Saludos!
👉 *SUSCRÍBETE* y _activa_ la *CAMPANITA* 🔔: ua-cam.com/users/matesconandres ✅✅✅
👇👇👇 *MATRICES 2º Bachillerato* : lista de reproducción completa 👇👇👇
🔴 ua-cam.com/play/PLNQqRPuLTic8lzQdllSf0LfQdrtxCM_iI.html
Gracias a ti aprobé selectividad y gracias a ti aprobaré algebra en la universidad GRACIAS PROFEE
Me alegro muchísimo :)
Vídeo correspondiente al bloque de álgebra para 2º de bachillerato. Cualquier duda que tengáis, aquí debajo en los comentarios :)
Muchísimas gracias por tu explicación, tu video me ayudó mucho. Por fin he aprendido a calcular la inversa de una matriz con este método :)
No sé qué haría sin tus vídeos en plena pandemia XD. Muchas gracias!
En la b al final era -12 antes de dividir por 3 y quedo como 12, pero de todas maneras muchisimas gracias, explica exelente
Muchas gracias. En el minuto 11:05 advierto del error.
Te entendí más que a mi Dr. de matemáticas. Gracias por salvar mi semestre!!!!!
Guauuuu. Me alegro mucho 😊😊😊
genio gracias, tengo que rendir matrices en la facu y esta explicacion es genial !!! te agradezco muchisimo !!!
Me alegro mucho que te haya sido útil. Suerte en tus exámenes ;)
EXCELENTE!!! MUCHAS GRACIAS
En el apartado a) yo cambié la fila 1 por la fila 2 y al revés y dividí por 4 para tener un 1 como pivote pero creo que eso no se puede hacer verdad? Es decir que puedo sustituir una fila por una combinación lineal del resto pero solo dividir por un número una fila o columna no se puede?? 5:37
EL UNICO VIDEO QUE ENTENDI Y AHORA DOMINO ESTE TEMA GRVIAS !! C:
pol mauricio silva lazaro me alegro mucho. Gracias por visitar el canal :)
Excelente video , muchas gracias
Muchas Gracias Andres me sirvió mucho para el examen de mañana
Qué buen profesor si señor👏🏻
Muchas gracias :) :)
Hola Andrés! Primero de todo, muchas gracias por tus vídeos! Quería preguntar si lo de "pivotar con los elementos de la diagonal" es algo que podemos generalizar a la hora de calcular la inversa de una matriz por Gauss-Jordan :)
Así es.
gracias, por los aportes, ya me es mas fácil dominar el tema
+cesar mejia Me alegro mucho :)
Felicidades. Muy buen youtuber me he topado ;)
John Samuel Moya Muchas gracias ;)
buenas , consulta , no tiene inversa cuando tiene una linea de todos 0 ya sea fila o columna o solo aplica para fila?
No se puede explicar mejor. Muchas gracias profe.
Muchas gracias por seguir el canal. A darle fuerte con las matrices ;)
Más que recomendable!! super claro!!!
Muchas gracias 😊😊
Con esta forma también se podría saber si tiene inversa desde el principio no? Calculas Sarrus el determinante y si da distinto de 0 y sigues con el ejercicio, sino lo dejas como no existente, no?
Así es
GRACIAS!!!
Excelente! muchas gracias
+Esther Solis gracias por visitar el canal.
Genio se entiend todoo!
PROFE DISCULPE SI FUERA 0 EN VEZ DE OTRO NUMERO NO SE PUEDE REALIZAR POR GAUS VERDAd?
el -2 x 3 no da -6 ? en este cao no se deberia restar para que nos de el 12 cero ?
buen video profesor, se entendió todo
Muchas gracias 😊😊
Excelente 😍😍😍
Muchas gracias 😊😊
buen video, muy entendible a mi parecer
Muchas gracias amigo 😊😊😊
excelente vídeo , solo tengo una pregunta : en el primer ejercicio de orden 2 puedo empezar a buscar la diagonal 1 en ves de empezar a buscar los ceros? vi que usted empezó buscando el cero en la segunda fila y quiero saber si se puede hacer lo contrario. gracias ;)
Muchas gracias. Sin ningún problema. Siempre que consigas la matriz identidad en el bloque de la izquierda, habrás conseguido la inversa en el de la derecha, independientemente del orden que sigas.
Por que a mi me han dicho que para calcular la inversa de una matriz no puedes multiplicar la fila que quieres cambiar, solo puedo multiplicar la fila que hace que cambie ya sea por una fracción o lo que haga falta para obtener el resultado que quiero
Excelente, muchas gracias!!!!! ;)
Gracias a ti por visitar el canal 😊😊
GRACIAS
Hola !!!!!! Tengo una duda y es que si se puede hacer lo que se quiera a una fila para conseguir lo que queremos ? , un saludo !! :)
Las transformaciones válidas son multiplicar las filas por números (distintos de cero) y sumarle/restarle otras filas multiplicadas por números (distintos de cero). No puedes por ejemplo, multiplicar filas o hacer la potencia de una fila.
@ muchas gracias !!! Explicas muy bien , gracias de Nuevo 😊
Tengo una pregunta en la matriz 3x3 cuando haces 0s con el segundo pivote el de la posición fila 2 columna 2 , es mejor hacer 0s debajo de la diagonal y luego encima o si vemos que es fácil hacer un 0 encima del pivote lo hacemos muchas gracias !!
Debes hacer ceros por debajo y por encima del pivote. Lo puedes hacer en un solo paso o en dos, como quieras. Llegarás al mismo resultado.
Si tengo una matriz A5x5 y se le realizan una serie de operaciones elementales y la matriz que resulta es B y me da los valores de esta última. Me pide que averigue la matriz reducida de A. Cuándo se aplica la identidad?
No acabo de entender tu duda, pero el objetivo de Gauss-Jordan es conseguir siempre la matriz identidad a la izquierda por transformaciones elementales. Si lo consigues, el bloque que te queda a la derecha es la inversa.
URGENTE!!! Excelente vídeo muchas gracias, amigo cuando la última fila de 0 ¿ se puede hacer la demostración AA^1=I ? O ¿No se hace nada? es que me lo piden en un ejercicio y no se que hacer, gracias espero su respuesta.
Corrijo AA^-1=I *
Tal y como indico en el vídeo, en el caso de que obtengas una fila de ceros en el bloque de la izquierda, va a ser imposible obtener la matriz identidad en dicho bloque. Cuando esto ocurre quiere decir que la matriz no es invertible o no tiene inversa. En otras palabras, quiere decir que dada una matriz A no va a existir ninguna matriz (la que llamaríamos A^(-1)) de forma que se cumpla A*A^(-1)=I. Por tanto no se puede hacer la demostración que dices, simplemente, porque la matriz A^(-1) no existe. Espero haberte ayudado.
me suscribo muchas gracias. :)
Gracias y no dejes de recomendar el canal a quien creas que le puede interesar :)
Exelente vidie
+DAVID GUAPI muchas gracias :)
Mates con Andrés de nd
Andrés una pregunta, ¿una matriz con una fila de todos 0s nunca va a poder ser invertible?
Así es. No es invertible nunca.
Hola. Por casualidad en algún video explicas los sistemas lineales equivalentes?
Te paso el link a la lista de reproducción de sistemas donde los resuelvo por Gauss y por Rouché-Cramer.
Sistemas de ecuaciones lineales: ua-cam.com/play/PLNQqRPuLTic_sF462dINa6bBtcx2uix7w.html
Mates con Andrés gracias
hola muy bien explicado fácil de entender me podría ayudar a calcular la matriz inversa con determinantes
+johani cediel muchas gracias. La semana que viene voy a grabar varios vídeos de determinantes. Estate atento al canal ;)
En la uba, ciencias economicas de argentina, sumar y restar filas en una matriz es el metodo de gauss, y nos enseñan otro metodo de gauss jordan, con pivotes. En youtube no puedo encontrarlo..
Se puede llegar a la Matriz A a partir de la inversa de A ?
+miguel aguilar si vuelves a repetir el mismo proceso llegarías a la matriz A porque la inversa de la inversa de A es A.
no savia pero ya se muy bien
+Nathaly Navas Me alegro. En estos días voy a subir al canal cómo calcular la inversa mediante determinantes (el método de la matriz adjunta traspuesta)
Andres como se llama el ulltimo metodo que resolviste??
En realidad este método no tiene un nombre específico. Personalmente, para referirme a él, lo llamo el método de completar la matriz inversa con un sistema de ecuaciones. Saludos!
+Mates con Andrés aya gracias Andres , te pregunte porque eso me dejaron de trabajo ... Gracias , saludos
Junior Jhossep Huarac Retoblo Lo llamo por definicion
Buen video gracias :'v
Gracias :)
Min 7:54 era -1
ANDROID HACK correcto. En el minuto 11:05 reescribo la inversa tras corregir el error 😉
se entiende en video
+erik olivera nestares gracias
que es cuando la matriz está ala derecha
ANA BRAVO Creo que no entiendo tu pregunta. Concrétame un poco más y te ayudo :)
Algoritmo