Data Cleaning in Pandas | Python Pandas Tutorials

Поділитися
Вставка
  • Опубліковано 21 лис 2024

КОМЕНТАРІ • 414

  • @fede77
    @fede77 11 місяців тому +355

    For those struggling with the regular expression at 14:57 , you might need to explicitly assign regex = True (based on the FutureWarning displayed in the video). That is:
    df['Phone_Number'] = df['Phone_Number'].str.replace('[^a-zA-Z0-9]', '', regex=True)

    • @wenkanglee9596
      @wenkanglee9596 11 місяців тому +9

      gosh you're observant

    • @ronnelsupnet9850
      @ronnelsupnet9850 11 місяців тому +3

      Thank you!

    • @rhodaime79
      @rhodaime79 11 місяців тому +6

      My goodness. You saved me. I’ve been at this for about an hour. Thank you 🙏 thank you 🙏

    • @DevanshAsawa
      @DevanshAsawa 10 місяців тому +2

      Thanks a lot dude !!!!!! Helped a lot !!!!!!!

    • @rnjesus9950
      @rnjesus9950 10 місяців тому +3

      Legend.

  • @rahulraj3855
    @rahulraj3855 Рік тому +245

    Fan from India I just got 2 offers from very good companies thanks to your videos and it helped me transition from a customer success support to Data Analyst

    • @rozakhan2811
      @rozakhan2811 Рік тому +1

      Hey tell me how can I do it too ri8 now I'm working as a customer support executive please help me to grow..

    • @dywa_varaprasad
      @dywa_varaprasad Рік тому +1

      hey Rahul, how do you learn DA ? Can you share your experience it will be helpful for us!!

    • @sandeepthukral3018
      @sandeepthukral3018 Рік тому +1

      Hi bro is this course sufficient for beginner to land a job

    • @abdullahalmahfuz6700
      @abdullahalmahfuz6700 Рік тому +5

      Is this a spam comment?

    • @KingofQueenநானும்மகாவும்1111
      @KingofQueenநானும்மகாவும்1111 Рік тому

      ​@rozakhan2811 skills need is a basic thing...what you want..in that be strong..And way of Alex Teach Videos are Effective..

  • @tomaronson4419
    @tomaronson4419 9 місяців тому +122

    For splitting the address at 21:29, you may want to add a named parameter to the value of 2, as in n=2:
    df[["Street_Address", "State", "Zip_Code"]] = df["Address"].str.split(',', n=2, expand=True)

    • @JayDenton-n1n
      @JayDenton-n1n 9 місяців тому +2

      This helps! Thank you so much!

    • @nataliarobinson5671
      @nataliarobinson5671 9 місяців тому

      Thank you very much

    • @OmarRabeh
      @OmarRabeh 9 місяців тому

      thank you very much

    • @OkallTheAnalyst
      @OkallTheAnalyst 9 місяців тому

      Thank you!

    • @janrelleelam3628
      @janrelleelam3628 7 місяців тому

      OMG! Thank you so very much. I have been trying to figure this out for about four days now. I figured out the phone number issue and then how to split the address, but for the life of me splitting the address into named columns with the changes committed the df was not working. THANK YOU!

  • @DreaSimply21
    @DreaSimply21 Рік тому +7

    I like how in some of your videos you show us the long way and then the short cut, instead of just showing the short cut. I think that way gives the person who is learning a better breakdown of what they are doing.

  • @ashwanikumarkaushik2531
    @ashwanikumarkaushik2531 Рік тому +52

    This is one of the best videos regarding data cleaning I have ever watched. Really crisp and covers almost all the important steps. It also dives deep into concepts that are really important, but you rarely see anybody applying them.
    Must watch for everybody, who is looking to get into data field or are already in the field.

  • @sabuhiasadli6083
    @sabuhiasadli6083 Місяць тому +1

    what seems to be a daunting task at the beginning turns out to have an easy explanation with the right tools, thank you Alex !!!

  • @bennet5467
    @bennet5467 Рік тому +28

    Thanks for this content, this was so helpful!!
    I think i have some optimizations, correct me if im wrong :D
    27:04 instead of calling the replace function multiple times, you can create a mapping just like: replace_mapping = {'Yes': 'Y', 'No': 'N'} and call it like: df = df.replace(replace_mapping), so you dont have to specify mapping for each column and need to call .replace() just once.
    34:16 instead of the for loop + manually dropping row per row, you can make use of the .loc function like: df = df.loc[df["Do_Not_Contact"] == "N"] in order to filter the rows based on filter criterium.

    • @ivanovalle9764
      @ivanovalle9764 9 місяців тому

      Where did you learn that you could use a dictionary format to replace multiple values in one line? this is really useful, thanks!

    • @yanpaucon1043
      @yanpaucon1043 6 місяців тому

      Thank You. 34:16 is really helpful. I appreciate your kindness.

  • @farahandini3799
    @farahandini3799 Рік тому +20

    I really like when you make mistakes, because it tells that no one perfect. I sometimes anxious when I watch tutorials and they seem to be so good. You also implicate the struggles that you experiencing throughout the process is real. Thanks for the tutorial Alex.

  • @sj1795
    @sj1795 10 місяців тому +2

    Found this REALLY helpful! I love how you walk us through mistakes as well as explain WHY you do what you do throughout your videos. It adds so much value to each video. As always, THANK YOU ALEX!!

  • @HunzaFolk
    @HunzaFolk 8 місяців тому +1

    I am studying Data Collection and Data Visualization at Kings College, your channel is reccomned by our lecturers to understand data cleaning.

  • @stefan5249
    @stefan5249 25 днів тому

    Thank you for the data example, now I can connect all the code snippets that I learned individually and can finally use them together in your example!
    Really one of the best exercises I have found so far!
    Thank you so much, Alex!!

  • @jeanaimegakwerere8591
    @jeanaimegakwerere8591 Рік тому +3

    Thank you sir, you can't imagine how i fill confident in cleaning data after completing this video with real data practices. Thank you once again.

  • @L3GAT0Dantes
    @L3GAT0Dantes Рік тому +20

    If you're getting an error when trying to split the address, this is what worked for me; I had to remove the number of values to look for.
    df[["Street_Address", "State", "Zip_Code"]] = df["Address"].str.split(',', expand=True)

    • @arpandebnath6115
      @arpandebnath6115 Рік тому +4

      df[["Street_Address", "State", "Zip_Code"]] = df["Address"].str.split(pat=',', n=2, expand=True) use this you have to include pat

    • @toni_munoz
      @toni_munoz Рік тому +1

      thank you!

    • @warinside7831
      @warinside7831 11 місяців тому +1

      what does that exactly?

  • @millenniumkitten4107
    @millenniumkitten4107 Рік тому +68

    Some of the phone numbers are removed while doing the formatting. If you look in the excel file, you'll see that some of the numbers are strings and some are integers. When you run the string method during the formatting, it replaces the numeric values with NaN and they are later removed completely. If you want to avoid losing that data you'll need to use
    df["Phone_Number"] = df["Phone_Number"].astype(str)
    before formatting. You also won't need to convert to string in the lambda after doing this.

    • @millenniumkitten4107
      @millenniumkitten4107 Рік тому +10

      If you want to replace the empty values in No Not Contact you'll need to use
      df["Do_Not_Contact"].astype(str).replace("","N")
      Technically those values are not empty, they are NaNs which is why replace is giving them 'NNN' instead of just the one 'N'. It's treating it as if NaN equals three blank spaces

    • @atomicafk8704
      @atomicafk8704 Рік тому

      that's what i've noticed too, great work

    • @jameslindsay4705
      @jameslindsay4705 Рік тому

      You are a genius, thanks :)

    • @jaldaamol46
      @jaldaamol46 7 місяців тому

      Thanks man, this worked.

    • @guilhermeramon9523
      @guilhermeramon9523 4 місяці тому

      Obrigado ! Estava observando isso no meu dataframe e não entendia porque estava acontecendo !

  • @margotonik
    @margotonik 9 місяців тому +2

    I enjoyed working on this project. Thank you Alex and a huge thank you to those guys who helped in the struggling minutes!

  • @morris9973
    @morris9973 10 місяців тому

    I've been struggling with Pandas a bit and this video cleared some things for me!
    what frustrates me from the way my teachers would teach Pandas, their solutions are sometimes too efficient, in the sense that a student that started from zero who's taking an exam, will never be able to come up with these hyper efficient and elegant one-liners in their code. what I appreciate in your video is how you achieve the same results, but in a way that a beginner can easily remember and apply on an exam. thank you! I'll be checking out more of your videos.

  • @georgekalathoor
    @georgekalathoor 10 місяців тому +16

    instead of applying lambda function to convert Phone_Number column elements to string , we can also use
    df['Phone_Number'] = df['Phone_Number'].astype(str)
    and use dictionary as an argument to be passed inside replace method to avoid Yes becoming YYes df['Paying Customer']= df['Paying Customer'].replace({'Y':'Yes','N':'No'})

  • @dullfire8140
    @dullfire8140 Рік тому +3

    man lets go,you are our hero who can not afford paid courses

  • @drumkick1397
    @drumkick1397 Рік тому +21

    I discovered that replace() has an argument regex (regular expression). It is set as regex = True but when we change it to regex = False, it only looks for exact matches, meaning it won't change 'Yes' to 'Yeses', only 'Y' to 'Yes'. We can write df["Paying Customer"].replace('Y', 'Yes', regex = False) and it will work as expected.

  • @iinph
    @iinph 11 місяців тому +1

    thank you for your work Alex! I went through the entire video 1 by 1 twice and I can tell I learned a lot from this video , finally understanding why we need to learn Loops etc. and how simple cleaning methods work on Jupyter.

  • @emmanuelnwachukwu6071
    @emmanuelnwachukwu6071 Рік тому

    This is the best video I have ever watched on data cleaning using pandas.. even the mistakes were good to learn from.

  • @menyajasper4940
    @menyajasper4940 11 місяців тому +1

    This is really very important to both the beginners and pro. Kudos!!

  • @Elly-we9uc
    @Elly-we9uc Рік тому +2

    Also, to clean the Do_Not_Contact field, one can use: df['Do_Not_Contact'] = df['Do_Not_Contact'].replace({'N': 'No', 'Y': 'Yes'})

  • @ritwikmukherjee3572
    @ritwikmukherjee3572 3 місяці тому

    Hello Alex, thank you for such a wonderful tutorial . I have one suggestion regarding the last part where you are filtering
    # Filtering the Data with "Do_Not_Contact" Column with N and " "
    Filter1 = df["Do_Not_Contact"]=="N"
    Filter2= df["Do_Not_Contact"]==""
    df[Filter1 | Filter2]

  • @rnjesus9950
    @rnjesus9950 10 місяців тому

    After making it this far through the course over the last 2 months, looking at these last 4 videos I'm getting strong final exam vibes. Python has not felt intuitive to me at all, but I recognize its value. I guess it feels like taking Spanish 1 and having Spanish 2 tests. I'm definitely looking forward to applying what I've learned here to solidify the lessons more. I'm contracting for a company already and writing a proposal for them to transition to My SQL Server. I guess the fact that I feel overwhelmed with all the info means I'm actually learning how little I actually know, which is a good thing for growth in the long run. Rambling here, but I am incredibly thankful for the course, Alex.

  • @A4O_TSL
    @A4O_TSL Рік тому +3

    Alex your are the GOAT! for real thank you for all the tutorials and your help for everyone who want's to become a data analyst1

  • @pip9601
    @pip9601 6 місяців тому +5

    at 15:19 i would like to say something. in the new version from jupyter, if u write the code from alex the data will be same. To fix this, u can input regex = True after the ''. CODE: df['Phone_Number'].str.replace('[^a-zA-Z0-9]', '', regex = True). But overall i can't say anything except thank u alex for this awesome tutorial !!!!

  • @anikkantisikder2179
    @anikkantisikder2179 Рік тому +26

    For the address column: df[["Street_Address", "State", "Zip_Code"]] = df["Address"].str.split(",", n=2, expand = True). Defining only 2 was giving me an error. so i had to change it to n=2

    • @DreaSimply21
      @DreaSimply21 Рік тому +3

      This helped me, thank you! However, what does '"n" mean?

    • @bobojonkasymov2279
      @bobojonkasymov2279 11 місяців тому +3

      n=2 parameter indicates that the split should occur at most two times, producing three resulting parts.@@DreaSimply21

    • @championsadiq7411
      @championsadiq7411 10 місяців тому +1

      Thank you for this. It helped me a great deal

  • @yashjohngaming2928
    @yashjohngaming2928 Рік тому

    Best video available on internet so far for data cleaning in Pandas. Best explanation. 😇😇

  • @22MSHIVASHANKAR
    @22MSHIVASHANKAR Рік тому +1

    Alex, I loved the Video. It have Correct Explanation. Thank you so much for your Video.
    There is a Small Mistake while you are typing
    #Another Way to drop null value
    df.dropna(subset='Column_name',inplace = True). I hope you will notify the Error.
    Thank you.
    Have a Great day!

  • @JK-tk2do
    @JK-tk2do Рік тому

    Oh my.. I am going to watch every single video you created..

  • @omkar8101
    @omkar8101 Рік тому +3

    Thanks a lot Alex for the video ! This was exactly what I was looking for. May I request you to try and upload video on how to write Python ETL code which uses table in a cloud database like snowflake, saves it in a csv format, transforms it and then again uploads it on snowflake. And all these steps are being captured in a log file which is in txt format !

    • @MehmoodAyazKhan
      @MehmoodAyazKhan Рік тому

      vouching for this @Alex. It'd be really appreciated TIA

  • @fitnessfreak984
    @fitnessfreak984 Рік тому +1

    Hey, Alex, I just Started your Pandas Tutorial, and I was waiting for Data Cleaning video, when i open my UA-cam, First your Video is seen.. This is boon for me 😇🥺 Thanks, I hope you will Upload Matploib, Numpy and Many More Libraries video ❤🤗

  • @villjack
    @villjack Рік тому +1

    My fav thing to do in pandas, thanks for making tutorial.

  • @danielblum5691
    @danielblum5691 Рік тому +1

    Thank you for this video. I just finished this part of the data analytics course and I definitely learned something new and helpful.

  • @khaibaromari8178
    @khaibaromari8178 Рік тому +2

    Simply amazing! Well-explained and comprehensive. Loved it!

  • @MegaDave8520
    @MegaDave8520 Рік тому +8

    And I was already looking for some Pandas tutorial. Thank you, Alex, this was much needed. :)

  • @YR-up8vk
    @YR-up8vk Рік тому +2

    Thank you Alex for this detailed breakdown. Just a side note for those who don't like to use loops e.g. for, while
    For 31:00, you could do the following code 'df.drop(df[df['Do_Not_Contact'] == 'Y'].index, inplace=True'

    • @LuisRivera-oc6xh
      @LuisRivera-oc6xh Рік тому +3

      I'd say that's complicating the code. You can simply do
      df = df[df['Do_Not_Contact'] != "Y"]

    • @vickygalih5571
      @vickygalih5571 Рік тому

      @@LuisRivera-oc6xh i literally use this at the first time learning pandas myself

    • @ghanem87
      @ghanem87 Рік тому

      df = df.drop(df[df['Do_Not_Contact'] == 'Y'].index)
      df = df.drop(df[df['Do_Not_Contact'] == ''].index)
      OR
      df = df[df['Do_Not_Contact'] == 'N']

  • @sumeetkajale3679
    @sumeetkajale3679 Рік тому +2

    Hey alex, we don't need to take any course because you are there 😉
    I am doing your bootcamp of becoming a data analyst

    • @AlexTheAnalyst
      @AlexTheAnalyst  Рік тому +2

      Do it! I try my best to bring the best free content I can :)

  • @DataScienceconMilton
    @DataScienceconMilton Рік тому +2

    Great Pandas data cleaning video. Thank you very much for sharing your knowledge.

  • @jamilsonedu917
    @jamilsonedu917 11 місяців тому

    Using regular expressions for manipulating data is beneficial because it allows you to change strings as needed, especially when dealing with different types of strings.

  • @mastermatt6090
    @mastermatt6090 8 місяців тому

    I was intimidated by the Machine learning module but now I am not. Thanks a lot dude

  • @chernobarry6035
    @chernobarry6035 10 місяців тому +1

    Your explanation was super cool

  • @dawewatwese6301
    @dawewatwese6301 Рік тому +5

    Hi Alex, idk if you will see this comment. So I was doing the same codes, and I noticed when you eliminated the characters for the phone numbers at 14:57 you also deleted the phone numbers that did not have any characters in them. You can see that at index 3 for Walter White, before he had a phone number but after he had NaN. If you can tell me how to correct it, it would be very great. I also never commented on your videos, but i like them very much, they are very good, and helpful. Thanks for everything

    • @GlennLee-qz4st
      @GlennLee-qz4st 11 місяців тому +2

      Not sure if you're still looking for a solution, but from some online searching, I found a solution to avoid deleting phone numbers that did not have any error/contain no characters, by adding .astype(str) before .str.replace, this seems fix the issue and the code should look something like this:
      df["Phone_Number"] = df['Phone_Number'].astype(str).str.replace('[^a-zA-Z0-9]','',regex=True)
      Also note you'll have to add in regex=True manually.
      Maybe it's deleting as it somehow interpret whole number as non-numeric and deleting it erroneously, not 100% sure tho, still a beginner, and it might cause issue with other types of data.

    • @TasosKaraiskos
      @TasosKaraiskos 29 днів тому

      @@GlennLee-qz4st for me, walter white's telephone number is being deleted before the str.replace instruction is written. it's deleted as soon as i run
      df['Last_Name'] = df['Last_Name'].str.lstrip('...')
      df['Last_Name'] = df['Last_Name'].str.lstrip('/')
      df['Last_Name'] = df['Last_Name'].str.rstrip('_')
      for some reason.

  • @bharatsaraswat
    @bharatsaraswat 11 місяців тому

    Very well done! Great video. I am working on analyzing and cleaning scraped data from web and this guide is helpful, especially where you mentioned the mistakes.

  • @traetrae11
    @traetrae11 Рік тому +2

    Thank you Alex. That Lambda example is going to be very useful.

  • @jtmoleleki3604
    @jtmoleleki3604 9 місяців тому

    Thank you Alex. Your videos are very helpful. Now I can resume cleaning my data.

  • @Elly-we9uc
    @Elly-we9uc Рік тому +3

    Timestamp 32:42. I simply use
    #Filter out "Do_Not_Contact" == "Yes"
    df[df['Do_Not_Contact']!='Yes']

  • @balajijadhav6080
    @balajijadhav6080 4 місяці тому

    Thank you so much sir i have start my data cleaning from you From india 💌

  • @alwaysbehappy1337
    @alwaysbehappy1337 Рік тому +2

    Thanks Alex, Please post more videos.

  • @aaspirant5392
    @aaspirant5392 Рік тому +1

    You are great, Alex. Your teaching skills excellent.

  • @nitinvishwakarma9624
    @nitinvishwakarma9624 5 місяців тому

    Thank you, this is most elborative and simplest videos i saw

  • @nguyenthikieuoanh8966
    @nguyenthikieuoanh8966 5 місяців тому

    thanks for your effort making this amazing video. It helps me alot. I've been struggling on Data cleaning and your video is helpful

  • @enyinnayajaja
    @enyinnayajaja Рік тому

    Thank you Alex for this video on data cleaning with pandas. It is very detailed and explanatory

  • @sdivi6881
    @sdivi6881 9 місяців тому +2

    If any one is getting an error on df['Address'].str.split(",",2, expand=True), you can omit 2 and use df["Address"].str.split(",", expand=True)

    • @Gratitude-x3g
      @Gratitude-x3g 4 місяці тому

      @sdivi6881 Thank you so much 😊😊😊

  • @gudiatoka
    @gudiatoka Рік тому

    Great video mam, need more this type of tutorials

  • @pewolo_nyenh
    @pewolo_nyenh 11 місяців тому

    For explanation purposes, it is great.
    For getting the final result, I would have done differently though

  • @ateebbinmuzaffar3136
    @ateebbinmuzaffar3136 Рік тому

    Thanks for the detailed tutorial Alex. I was wondering, if i wanted to become a data scientist instead of a data analyst, would you recommend any people in the industry who I should follow? F.e is there an Alex the Data Scientist out there?😄

  • @FarizDarari
    @FarizDarari 9 місяців тому

    Many thanks for the dataset+code+video!!! 🔥🔥

  • @bolajiogunfowote8603
    @bolajiogunfowote8603 Рік тому

    The video I needed to have a realistic practice in data cleaning.thanks

  • @ZeuSonRed
    @ZeuSonRed Рік тому

    I not only survived! on 20:46 you can place AND in .replace('nan--' AND 'Na--' , ' '). Thank you 1:1

  • @avinashparchake7935
    @avinashparchake7935 Рік тому +5

    in Last_Name columns we can used replace function in order remove regular expression like ( ./-)
    code:
    df["Last_Name"]= df["Last_Name"].str.replace("[./_]","" ,regex= True)

    • @DreaSimply21
      @DreaSimply21 Рік тому +1

      OMG Thank youuuu!!! I knew someone on here had to know the answer to how to use regex lol.

    • @bolajiawofuwa8116
      @bolajiawofuwa8116 11 місяців тому

      Thanks

  • @50cent10891
    @50cent10891 Рік тому

    Great video! I enjoyed learning from you! Thanks for making things easier to understand

  • @ramakrishnaraolakkaraju3750

    Thanks for the video. Helped a lot in understanding Pandas.

  • @abhinavrastogi1699
    @abhinavrastogi1699 Рік тому

    Hi
    Nice explanation. But in this data cleaning you have simply remove NA values. But as per my understanding we need to fill NA values, I am not clear about the logic to fill in. If you can provide video on how to fill NA values it will help us a lot.
    Thanks
    Abhinav

  • @alexandermackintosh1755
    @alexandermackintosh1755 Рік тому

    Great video thanks! Can’t help thinking that tools like chatGPT, github copilot al, GPT engineer can pretty much tell you how to/do this all for you so maybe I am wasting my time learning this 😅

  • @shotihoch
    @shotihoch 7 місяців тому

    Not an analyst (never wanted to be), but it was very interesting. Thanks!

  • @Niranga.555
    @Niranga.555 Рік тому +1

    Hey Alex, Thanks for the super content ...!

  • @selimc3347
    @selimc3347 Рік тому +1

    Your work are amazing. Thank you so Much

  • @SHAIKNAZEER302-z9i
    @SHAIKNAZEER302-z9i 2 місяці тому

    Hey Alex ! this video is so helpful . At 32.30 instead of using for loop I think we can use this df1=df[(df['Do_Not_Contact']=='N') &(df['Phone_Number']!='')] to get the same result.

  • @Mwalimu-wa-Math
    @Mwalimu-wa-Math 7 місяців тому

    38:36 df[['Street_address','State','Zip_code']]=df['Address'].str.split(" ",n=2, expand=True)

  • @Legomancer
    @Legomancer 8 місяців тому

    at about 33:54, whoa! unless you were specifically told to do this, you are altering the data! Changing no value to 'N' is a no-no unless you have been told to do so. Otherwise you're adding information that was not there. We don't know if Harry Potter wants to be contacted or not and that's probably for someone above our pay grade to decide! :D

  • @nma7203
    @nma7203 Рік тому +1

    For those who want to replace Y => Yes , N => No, just need to remove .str and use only replace, like this
    df["Paying Customer"] = df["Paying Customer"].replace({'Y': 'Yes', 'N':'No'})
    df["Do_Not_Contact"] = df["Do_Not_Contact"].replace({'Y': 'Yes', 'N':'No'})
    df

  • @hamzaabdullahmoh
    @hamzaabdullahmoh Рік тому

    A Glorious Thank You!! Please Keep This UP!!!!

  • @yvonnemukhono3566
    @yvonnemukhono3566 6 місяців тому

    Very helpful, and well explained.

  • @Datatalksbro
    @Datatalksbro 2 місяці тому

    # Step 1: Convert to string and clean non-digit characters
    beta['Phone_Number'] = beta['Phone_Number'].apply(lambda x: ''.join(filter(str.isdigit, str(x))) if pd.notna(x) else x)
    # Step 2: Format the phone number to xxx-xxx-xxxx if it is exactly 10 digits long
    beta['Phone_Number'] = beta['Phone_Number'].apply(lambda x: f'{x[0:3]}-{x[3:6]}-{x[6:10]}' if pd.notna(x) and len(x) == 10 else x)
    print(beta)

  • @neildelacruz6059
    @neildelacruz6059 Рік тому +1

    Thanks for this absolutely great video.

  • @mohammed-hananothman5558
    @mohammed-hananothman5558 2 місяці тому

    Guys, I tried this for the paying customer column
    df2['Paying Customer'] = df2['Paying Customer'].apply(lambda x: 'Yes' if x == 'Y' else x)
    df2['Paying Customer'] = df2['Paying Customer'].apply(lambda x: 'No' if x == 'N' else x)

  • @sauravsubedi7089
    @sauravsubedi7089 8 місяців тому +1

    Instead of striping each symbols one by one in 9:11 i think its better to use
    characters_to_remove = ['/','...','_']
    for x in characters_to_remove:
    df["Last_Name"] = df["Last_Name"].str.strip(x)

  • @selvas5043
    @selvas5043 Рік тому +1

    Super Explanation Thanks

  • @malakilikemokaaa1385
    @malakilikemokaaa1385 11 місяців тому +1

    Python is so fun

  • @wenkanglee9596
    @wenkanglee9596 11 місяців тому +1

    29:42
    Just sharing my approach to remove the "don't call" rows
    df = df[df['Do_Not_Contact'] != 'Y']
    You can apply this to the missing phone number and the rest as well.

    • @Charlay_Charlay
      @Charlay_Charlay 10 місяців тому +1

      Man i love the comments section. Thank you for sharing this. This is a very simple method.

    • @wenkanglee9596
      @wenkanglee9596 10 місяців тому

      @@Charlay_Charlay glad that helped! You're welcome!

  • @KenWarren-j7c
    @KenWarren-j7c Рік тому

    Nice one Alex. Don't forget to add comments to the code! 🙂

  • @meryemOuyouss2002
    @meryemOuyouss2002 Рік тому

    Thank you soo much sir you're really a great professor 👏❤

  • @md.shahriarabidswapnil604
    @md.shahriarabidswapnil604 Рік тому

    thank you very much. your video helped me a lot. good luck

  • @vasavipasumarthi9601
    @vasavipasumarthi9601 9 місяців тому

    Really u fone a good job i became a big fan of u thank u so much for doing this

  • @yanpaucon1043
    @yanpaucon1043 6 місяців тому

    Thank you so much, Alex. You are the Best

  • @SurendraSingh-bd5wc
    @SurendraSingh-bd5wc 10 місяців тому

    Really enjoyed the video

  • @Insightss.....
    @Insightss..... 5 місяців тому

    I'm in love with ur videos

  • @nirmalpandey600
    @nirmalpandey600 6 місяців тому

    Amazing explanations!

  • @higiniofuentes2551
    @higiniofuentes2551 Рік тому +1

    In the case of column Phone_Number with all the variant of NaN, first "stringuify" the column, and after do the format thing and then replace with nothing all the content of the column when the content contains 2 -
    Thank you!

    • @juanlora5609
      @juanlora5609 Рік тому

      df["Phone_Number"].str.replace('[^A-Za-z0-9]', '', regex=True)

  • @SearchingforScraps
    @SearchingforScraps Рік тому

    Great stuff ! Do a collab with Rob Mulla !

  • @onitolu9698
    @onitolu9698 4 місяці тому +1

    Thank you Mr Alex

  • @salaimani
    @salaimani 9 місяців тому +1

    How you are at 23:27 apply the changes and go back to the previous steps in Jupiter notebook

  • @maryemmdini9408
    @maryemmdini9408 Рік тому

    very well explained video thank youuuu

  • @markobe08
    @markobe08 6 місяців тому

    for those struggling on 33:55
    df['Do_Not_Contact'].replace('', pd.NA, inplace=True)
    df['Do_Not_Contact'].fillna('N', inplace=True)

    • @AgathaMenc-uv3ob
      @AgathaMenc-uv3ob 4 місяці тому

      Pol miliona złotych i przeprosiny publiczne

    • @AgathaMenc-uv3ob
      @AgathaMenc-uv3ob 4 місяці тому

      Adwokat będzie rozmawiał nie ja

    • @AgathaMenc-uv3ob
      @AgathaMenc-uv3ob 4 місяці тому

      Tak łatwo komuś życie spieprzyć?? Tak łatwo??? Więc oko za oko..

  • @ZeuSonRed
    @ZeuSonRed Рік тому

    Okay maybe I was not right for the previous comment but instead using replace, you can just use if else function

  • @Mohamed-Hassanin
    @Mohamed-Hassanin Рік тому

    Please , Please , Please Alex we need to know everything in depth everything about the new product Microsoft Fabric, and how this will impact on the industry and it's time to convert from Mac to Windows in sake of MS Fabric

  • @qlintdwayne9044
    @qlintdwayne9044 9 місяців тому +1

    Favorite thing to do is to come to the comments section for any errors that don't make sense to me.

  • @avocado23474
    @avocado23474 3 місяці тому

    Thank you a lot, Alex! ^^