8.4. GridSearchCV and RandomizedSearchCV - Python implementation | Hyperparameter Tuning

Поділитися
Вставка
  • Опубліковано 17 січ 2025

КОМЕНТАРІ • 23

  • @juliazhu6133
    @juliazhu6133 2 місяці тому

    The course is very in-depth. It helps me a lot.

  • @a_righteousway5954
    @a_righteousway5954 2 роки тому +1

    Thank You for your all efforts

  • @zebarezai1906
    @zebarezai1906 Рік тому +1

    Great explanation 👌

  • @prakratisahu4707
    @prakratisahu4707 6 місяців тому

    Thanks a lot, beautifully explained

  • @prathapcme344
    @prathapcme344 10 місяців тому +3

    why did you take combinations like 1,5,10,20 ...how to take the values

  • @fun_stuff_and_games
    @fun_stuff_and_games 2 роки тому +1

    Hi Siddha, you offer great way to explain things, thanks! Just a question on the steps to follow.
    Are the steps the following:
    1. Run train_test split and display scores for a number of different models (e.g. random forest, decision tree, svc…) >>> this is from video 8.2
    2. Validate the score performance seen in step 1 via cross-validation and pick the best performing model (thinking: It could be that a model that is best in train_test_split, is not the best model when running cross-validation. >>> this is from video 8.2
    3. Take the best model (let’s say it’s Random Forest) and perform Grid Search via hyperparameter tuning as you explained in this video. In this case, I don’t have to run GridSearch on all models, as I already defined in steps 1 and 2 which one is the best and I am going to use.
    4. Once the best model has been validated, run the model on the entire dataset, meaning on X (instead of X_train, X_test) as we don’t need to test anything anymore (we know which ones are the best ones).
    Are these steps correct or am I confusing something?

  • @siddharthmishra5953
    @siddharthmishra5953 2 роки тому +4

    How long you will take to completely upload all the remaining video for this ML course???

    • @Siddhardhan
      @Siddhardhan  2 роки тому

      I am not sure to be honest.... My schedule is packed as of now...

  • @krupakarreddy1758
    @krupakarreddy1758 10 місяців тому

    This guy is underrated

  • @DiyaRawat-u2x
    @DiyaRawat-u2x 7 місяців тому

    bestttttt . Thankyou so muchh

  • @arshad1781
    @arshad1781 2 роки тому

    Thanks you 💟

  • @Abdullah-bx2wz
    @Abdullah-bx2wz 2 роки тому

    Thank you so much
    keep going

  • @vivos89
    @vivos89 6 місяців тому

    Great video.

  • @satire6344
    @satire6344 Рік тому

    for regression will the parameters for tunig remain same or change ?

  • @armin.falahatkar
    @armin.falahatkar 8 місяців тому

    hi
    thank you so much
    it was reallllly helpful
    i have a question ? when we use gridsearchCV and use cv=5 on it , it's mean that cross_val_score running and data separate to cv=numbers of folds ? like when using cross_val_score alone ?

  • @fun_stuff_and_games
    @fun_stuff_and_games 2 роки тому +1

    So, what I am basically asking is. When do we use Grid Search? Before cross validation or after cross validation?

  • @utkarshtripathi9118
    @utkarshtripathi9118 2 роки тому

    Sir could u pls make videos on Real industry data science projects

  • @mallemoinagurudarpanyadav4937
    @mallemoinagurudarpanyadav4937 2 роки тому +1

    Plz,update u r circullam