Random Forest Python Example from Scratch using SKLearn - [Deployment Included]

Поділитися
Вставка
  • Опубліковано 13 гру 2024

КОМЕНТАРІ • 44

  • @YiannisPi
    @YiannisPi  3 роки тому +2

    Let me know what you think about this video! Which model shall we do next?

    • @Thanos-gg5ru
      @Thanos-gg5ru 3 роки тому

      Hey Giannis thanks for the video. Could you please make a video of applying sklearn models on time-series data(especially univariate) ? I think its interesting because its a bit different and there are not many examples about this on the internet.

    • @balakrishna5711
      @balakrishna5711 3 роки тому

      Hi, could you please let me know how to read 60 k files of 3 TB data into jupyter notebook, please help me or refer any source, it's very urgent for my work.
      Could you please reply for the same.
      Thanks...

    • @hristo8835
      @hristo8835 3 роки тому +1

      Great Video. As to model ideas for the future, how about a recommender model to select items based on similar attributes rather than the one everyone does to recommend movies via ratings.

    • @21121990jay
      @21121990jay 3 роки тому

      Can you please make a video on multilinear Regression model with deployment.

    • @treyhannam3806
      @treyhannam3806 3 роки тому

      This is great! I am wondering if you could use GridSearchCV instead of writing out a loop when tuning the random forest model? If you can, is the method equally as useful?

  • @Kon33Krit33
    @Kon33Krit33 Рік тому +1

    Εύχομαι μέσα από την καρδιά μου τη βοήθεια που μας προσφέρεις να την απολαύσεις κ' με το παραπάνω...

  • @leandrop.7963
    @leandrop.7963 3 роки тому +2

    Mate, I need to say, You are a legend, seriously this is what everyone look around and can't find!
    So happy to have found this that I have to comment.
    Such a great work, deserve to be said. Congrats, I'm huge fan after that.

  • @andreasp.189
    @andreasp.189 3 роки тому +2

    Another excellent, well structured and informative video added to the Data science world by Yiannis who doesn't stop to impress us! Keep it rolling!!!

  • @abidhossain4412
    @abidhossain4412 Рік тому +1

    This channel is the best. Please do more videos on other machine learning models.

  • @MahmoudNasrCPA
    @MahmoudNasrCPA Рік тому +1

    Thank you for this great tutorial

  • @abbeynguyen8396
    @abbeynguyen8396 2 роки тому +1

    Thank you so much for your videos. Please make more videos about data visualization.

  • @tomjohnas9304
    @tomjohnas9304 3 роки тому +1

    Nice!! Been waiting for this!

  • @jbj926
    @jbj926 2 роки тому

    Hello,
    For the calf.best_estimator_, my output cell is not displaying all of the prams and putting …) at the end. How do i get the output to show everything?

  • @chrysis7989
    @chrysis7989 3 роки тому

    Thanks Yiannis!
    Keep up the good work!

  • @Downesy230
    @Downesy230 3 роки тому

    Great video. If I have no 'new' data, so should I fit the XGBoost model on the training set (.fit(X_train,y_train)) only and then predict y with only X_test (.predict(X_test))?

  • @BlessedNumbers
    @BlessedNumbers 3 роки тому

    Hello Sir, Why you are not making any videos, it was so great and helpful

  • @mapac8866
    @mapac8866 5 місяців тому

    very good !! your vids help a lot

  • @Rodaportal
    @Rodaportal 3 роки тому

    Well detailed, keep it up!

  • @jerrerock
    @jerrerock 2 роки тому

    Why do you take all of the data in the XG Boost clf.fit(X,Y), I have been learned to always split test, train, validation cause otherwise the model is overfitting and can't be tested??

  • @tarigahmed8637
    @tarigahmed8637 3 роки тому +1

    Thank you Yiannis, great as always,
    I have little suggestion about previous episodes,
    If you can make more projects regarding sql,and joins, (project that can link excel with sql again)
    Also if you can make some projects with tableau, like sales insights or any projects.
    I didn't reach these today video yet to give my opinion 😅
    Thank you

  • @hristo8835
    @hristo8835 3 роки тому

    Thank you Yiannis. Great content!

  • @saifilicious1749
    @saifilicious1749 2 місяці тому

    brother when im trying to load the csv file at the end of "unseen data" still its showing the exited column,i just copied the code you gave, whereas in your video there is no exited column. Whats the reason?dont your csv file has that column?

  • @louatisofiene9114
    @louatisofiene9114 3 роки тому +1

    is it okay to work with 49% of misclassified
    i have same problem BTW

  • @shadrackdarku8613
    @shadrackdarku8613 3 роки тому

    great content keep the good work up .Bravo

  • @tristanhughes6409
    @tristanhughes6409 3 роки тому

    I've tried to follow this, but having problems with GraphViz. It says: AttributeError: module 'graphviz.backend' has no attribute 'ENCODING' . Does anyone have any ideas?
    The video is very informative, thank you

  • @ajithkurianphotography6181
    @ajithkurianphotography6181 3 роки тому

    How to give a single input for prediction

  • @alasternyaude2582
    @alasternyaude2582 3 роки тому

    amazing work!

  • @paulntalo1425
    @paulntalo1425 3 роки тому

    Thank you for this great video

  • @cowardlyanonymous2446
    @cowardlyanonymous2446 2 роки тому

    thank youuuu!!

  • @jongcheulkim7284
    @jongcheulkim7284 3 роки тому

    Thank you.

  • @josephmart7528
    @josephmart7528 3 роки тому

    I think you made a mistake in your confusion matrix plot for the final_model when you used (classes=rf.classes_)
    It should be like this ==>> plot_confusion_matrix(cm_norm, classes=final_model .classes_)
    You should have used (final_model .classes_) not plot_confusion_matrix(cm_norm, classes=rf.classes_)
    My final model gave 0.79 TP when I used [classes=final_model .classes_]

  • @ifeanyiokwuazu3225
    @ifeanyiokwuazu3225 3 роки тому

    Wow