Separable Differential Equation (introduction & example)

Поділитися
Вставка
  • Опубліковано 16 гру 2024

КОМЕНТАРІ • 73

  • @lucat4448
    @lucat4448 7 років тому +104

    The piano playing in the background is the secret behind building a math genius.

  • @comicstwisted
    @comicstwisted 5 років тому +15

    you describe everything so clearly that even watching at double speed I can follow everything

  • @MarkMcDaniel
    @MarkMcDaniel 6 років тому +57

    C is actually infinitely recurring since tangent is periodic. C = -pi/4 + pi•k, where k is an integer.

    • @JasonJia11
      @JasonJia11 Рік тому +1

      Good catch!

    • @fishin4hogs-q5v
      @fishin4hogs-q5v 5 місяців тому

      I was confused about this sense there is multiple solutions to tan(x)=-1

  • @ishajak9452
    @ishajak9452 3 роки тому +5

    Thank you so much for the Diff Eq series!! I've learned so much more in this 9 minute video than I have in watching 50 mins of my professor talk.

  • @leaolp
    @leaolp 8 років тому +5

    Man, youre just getting even better topics! I am actually studying Differential Equations this semester(Computer Engineering) and I bought Wiliam' Boyce's book(Its awesome). Imagine my surprise to find out that youre making a series about D.E! I was a huge fan of you now I am a disciple, my friend! Thanks for helping me.

  • @strutter789
    @strutter789 4 роки тому +2

    I love how you can tell he enjoys what he is doing so much.

  • @kimowendeleonfermante4782
    @kimowendeleonfermante4782 2 роки тому +1

    THANKYOU SO MUCH SIRRRR!!! YOU HELPED ME ALOT, PLS DONT STOP MAKING VIDEO TUTORIALS LIKE THIS, WE REALLY APPRECIATED IT! MORE POWER WOHO!

  • @canadianbro9327
    @canadianbro9327 5 років тому +1

    Thank you so much. Tomorrow is my midterm exam. You helped me too much.

  • @zzwag
    @zzwag 8 років тому +19

    I'm taking diff eq this spring semester coming up! Will you be making more diff eq videos??? Also I got a B in calc 3!!!! You helped me alot while i was taking calc 2 haha

    • @blackpenredpen
      @blackpenredpen  8 років тому +14

      I will try to make as many vids as possible before Spring, but I do have to teach a class in the Winter, so we will see!

  • @ca7821
    @ca7821 5 років тому

    I passed my Integral Calculus subject with the help of ur videos. Help this will help me as well. thank u :)

  • @christianrodriguez823
    @christianrodriguez823 8 років тому +1

    Well, now I can't wait for differential equations next fall! Great video as always!

  • @wagsman9999
    @wagsman9999 6 років тому

    Brilliant review. Just what I needed.

  • @yaseerapatel3628
    @yaseerapatel3628 6 років тому +1

    This was extremely helpful. THANK YOU

  • @mikelanyon8018
    @mikelanyon8018 2 роки тому

    dude you are an absolute beast!

  • @jhololopez4821
    @jhololopez4821 4 роки тому

    YOU.ARE.THE.BEST.

  • @mokouf3
    @mokouf3 5 років тому

    Using the identity tan(θ+kπ) = tanθ
    You should be able to write a general solution given initial condition y(0) = -1

  • @sorenman1
    @sorenman1 8 років тому

    Man, I wish this was on last semester made it so much easier.

  • @alaeGhemra
    @alaeGhemra Рік тому +1

    I can't stop smiling

  • @jantumo1425
    @jantumo1425 7 років тому +4

    blackpenredpen ily

  • @nuhakamal2407
    @nuhakamal2407 2 роки тому +1

    thank U so much to be successful🥰

  • @lawrencegunnell7890
    @lawrencegunnell7890 8 років тому

    I have Diff EQs this term. Thanks for this :)

  • @cappedpluto7638
    @cappedpluto7638 3 роки тому

    thanks for the help

  • @MrSupremeGT
    @MrSupremeGT 4 роки тому

    Thank you for the calc help :)

  • @silentthriller
    @silentthriller 6 років тому

    Did you do one where there is dy/dx on both sides like this y-x dy/dx = 3-2x^2 dy/dx? Where is it?

  • @DarkSide-iw8qo
    @DarkSide-iw8qo 2 роки тому

    you are perfect🙏🙏🙏🙏🙏

  • @mw79863s
    @mw79863s 6 років тому

    I'm struggling with what feels like some ambiguity here: arctan(y)=1/2 x^2 +c. I'm used to arctan only taking values from - to +pi/2, but the RHS can clearly take a much larger range of values. If we consider arctan +n(pi), does that not create ambiguity for equality when taking tan of each side?

  • @whoami8434
    @whoami8434 5 років тому +4

    Found ‘em

  • @saxbend
    @saxbend 7 років тому

    Can you prove that any function with two separate inputs x and y can be represented as a product of a function of x and another function of y?
    Without such a proof I do not feel able to disregard the possibility of a function sufficiently complicated to make such a separation impossible. If a proof is too complicated perhaps you could demonstrate a few examples that don't seem obviously separable, such as (ln|x+y|)^sin(x-y).

    • @speaketh
      @speaketh 7 років тому +1

      Not all differential equations are separable. That is, not all functions f(x, y) can be written as g(x)·h(y).

  • @ethanmiller5223
    @ethanmiller5223 5 років тому

    Very cool thanks

  • @1972hattrick
    @1972hattrick Рік тому

    What about (3pi)/4?

  • @collegeguy1325
    @collegeguy1325 6 років тому

    just stumbled across this video. Amazing explanation but had a question hopefully someone can answer. Isnt the tan of -1 = 3pi/4? I mean its -pi/4 too but its also 3pi/4. Does it matter which one we take? Thanks

    • @animalfarm7467
      @animalfarm7467 6 років тому

      I have the solution as y(x)=tan(x^2/2+3π/4+nπ) for n=0,1,2,3….

    • @coc235
      @coc235 3 роки тому

      Actually you should write the solution as y=tan(1/2x^2-п/4+пn), sinve the period of tan is п. However all those functions are the same, so i guess it doesnt matter and you can take any value for n

  • @buler5441
    @buler5441 6 років тому +1

    It's actually not that bad 😂😂
    I'm glad to u

  • @jeff7620
    @jeff7620 4 роки тому

    0:10

  • @thejtblckwngs
    @thejtblckwngs 2 роки тому

    amazing

  • @abasiomary9609
    @abasiomary9609 5 років тому

    Fantastic

  • @renan6827
    @renan6827 4 роки тому

    Thank you !!!! :-)

  • @markarmstrong8659
    @markarmstrong8659 2 роки тому

    Why C is not 3pi/4? Or 7pi/4

  • @yukilino
    @yukilino 6 років тому

    how do u get tan inverse from 1 over 1 + y square?

    • @09neptune
      @09neptune 6 років тому

      you differentiate y = arctan u.
      u = tan y
      du/dx = d/dx (tan y) = sec² y dy/dx
      dy/dx = 1/sec² du/dx
      = (1/1+tan² y) du/dx from the identity (sec² = 1+tan² y)
      =(1/1+u²) du/dx

    • @lumina_
      @lumina_ Рік тому +1

      the antiderivative of 1/(1+x²) is arctan(x)

  • @rotten-Z
    @rotten-Z 4 роки тому

    tan^-1 it's arctan?

  • @jhayrhex4448
    @jhayrhex4448 2 роки тому

    Good day can i help please 🥺 in this equation
    How to find separable Differential equation
    dz-(4x³-4x³z+x³z²)dx+(4y-1)(2-z)²dv=0

  • @carlosalbertodelgadoelizon4457
    @carlosalbertodelgadoelizon4457 6 років тому

    Why isn't the general solution y = tan( (x^2)/2 + C_1 ) + C_2 ?

    • @carlosalbertodelgadoelizon4457
      @carlosalbertodelgadoelizon4457 6 років тому

      great video by the way :D thank you for the content!

    • @johnprice233
      @johnprice233 6 років тому +1

      In the initial problem you had that
      dy/dx =x+xy^2
      Now when we differentiate the final result
      y=tan((1/2)x^2+C)
      dy/dx=(1+tan^2((1/2)x^2+C)x
      Now when we compare the result with our derivative, they have to be totally equal
      x+xy^2= (1+tan^2((1/2)x^2+C)x
      Divide both sides by x
      1+y^2=1+tan^2((1/2)x^2+C)
      y^2=tan^2((1/2)x^2+C)
      Now if you substitute our result into this, it will work, but if our solution had another C outside of tan you'd have a function plus a constant is equal to itself. That is, that constant has to be zero.
      I hope that this helps.

    • @carlosalbertodelgadoelizon4457
      @carlosalbertodelgadoelizon4457 6 років тому

      It does! Thank you!!

  • @gunterhoflack2159
    @gunterhoflack2159 6 років тому

    looked at the video, but I can't find a solution for my problem , don't find how to separate them.
    y' = exp(-y/x) + y/x ==> How do i solve this,, probably simple solution but can't find it ......
    tried by playing with ln(y') = (-y/x + ln y/x)
    but then how to integratie to find Y ??
    greetz

  • @jhayrhex4448
    @jhayrhex4448 2 роки тому

    Good day can i help please 🥺 in this equation
    dz-(4x³-4x³z+x³z²)dx+(4y-1)(2-z)²dv=0

  • @phenylalanine8145
    @phenylalanine8145 5 років тому

    What about this example
    (x^2-y^2)y'=x-y

    • @rot6015
      @rot6015 5 років тому

      (x^2-y^2)dy/dx = x-y
      (x-y)(x+y)dy/dx = x-y
      (x+y)dy/dx = 1
      x*dy/dx + y*dy/dx = 1
      int(x*dy) + int(y*dy) = int(1*dx)
      xy + (y^2)/2 = x + c
      y = -x + sqrt(x^2 + 2(x+c))
      Im not sure tho

    • @kuyanerd3635
      @kuyanerd3635 5 років тому

      I think that is correct.

  • @lambingsilog
    @lambingsilog 5 років тому

    where did tan^-1 comes from

    • @carultch
      @carultch 8 місяців тому

      The integral of 1/(x^2 + 1) dx is arctan(x)
      You can prove this as follows:
      Let y = arctan(x)
      Take the tangent of both sides:
      tan(y) = x
      Use implicit differentiation to find dy/dx:
      sec(y)^2 * dy/dx = 1
      Solve for dy/dx:
      dy/dx = cos(y)^2
      Recall that y = arctan(x):
      dy/dx = cos(arctan(x))^2
      Construct a right triangle with angle arctan(x), base of 1, and height of x. This means the hypotenuse is:
      sqrt(x^2 + 1^2
      We'd like to find the base over hypotenuse, to find cos(arctan(x)), which therefore is:
      cos(arctan(x)) = 1/sqrt(x^2 + 1)
      We'd really like to find cos(arctan(x))^2, which therefore is:
      cos(arctan(x))^2 = 1/(x^2 + 1)
      Thus:
      d/dx arctan(x) = 1/(x^2 + 1)

  • @fountainovaphilosopher8112
    @fountainovaphilosopher8112 7 років тому +5

    I know it doesn't matter, but c can be more than just pi/4.

  • @jackcimini1802
    @jackcimini1802 6 років тому

    great

  • @Victor-uv4vt
    @Victor-uv4vt 2 роки тому

    King

  • @overlordprincekhan
    @overlordprincekhan 3 роки тому

    Can anyone explain me, He wrote 'y(0)=1' in the thumbnail and he's putting the initial condition at 'y(0)= -1 ' like wtf?

  • @tcp8674
    @tcp8674 3 роки тому

    🔥

  • @helloitsme7553
    @helloitsme7553 7 років тому

    I can prove you can't solve any dif equation with this form y'+ln|sinx|y = g(x) simple the special integration factor is non-algebraic