IEEE Floating Point Representation | Representation of Denormalised Numbers and Special Numbers

Поділитися
Вставка

КОМЕНТАРІ • 13

  • @ALLABOUTELECTRONICS
    @ALLABOUTELECTRONICS  Рік тому +3

    Other useful videos related to Floating Point Representation:
    1) IEEE 754: Single Precision and Double Precision Format:
    ua-cam.com/video/e_J9lXnU_vs/v-deo.htmlsi=aBlp8v7sD2UY6tiQ
    2) Fixed Point vs Floating Point Numbers:
    ua-cam.com/video/zVM8NKXsboA/v-deo.htmlsi=8yIaPa14s4jwg9Cw
    Link for the Digital Electronics (Playlist):
    bit.ly/31gBwMa

  • @poojashah6183
    @poojashah6183 Рік тому +3

    Very well explained 👌🏻👌🏻👍🏻

  • @ayan.bhunia
    @ayan.bhunia Рік тому +3

    Thank you 🙏👍

  • @mayurshah9131
    @mayurshah9131 Рік тому +2

    You are awesome 🎉🎉

  • @HosseinKhosravipour
    @HosseinKhosravipour 3 місяці тому

    Many thanks for such an interesting explanation.

  • @marvin5729
    @marvin5729 7 місяців тому +2

    Hello from Germany. Very nice explenation! I only have one question: What would the numer at minute 5:29 be in Decimal (its the -0.00011 * 2 ^-126). Could you give me a Calculation method for that pls

    • @ALLABOUTELECTRONICS
      @ALLABOUTELECTRONICS  7 місяців тому +3

      Yes, sure. First, you need to separate the given HEX number in 32 bit binary number. Then write it in a different segments. (like sign, exponent and mantissa). Here, since exponent is zero and mantissa is non-zero, it means the given number represents de-normalized number. So, it will be in the form ± 0.000 x 2 ^-126. That means here, exponent is 2^-126. Now, here since the mantissa is 00011. So, overall number will be 0. 00011 x 2^-126. More over since sign bit is 1, so number is negative number. Therefore, the equivalent decimal number is - 0.00011 x 2^-126. I hope, it will clear your doubt.

  • @AlberTesla1024
    @AlberTesla1024 7 місяців тому +1

    I think there is a mistake, in case of normalized numbers, the biased exponent can be between 0x01 to 0xFE, but in case of denormal number the exponent is 0, which makes the actual exponent equal to 2^-127 not 2^126.
    To differentiate whether the number has preceding one of not is identified by exponent value which is 1 for all normalized numbers but 0 for denormal numbers.
    Correct me if I am wrong.

    • @ALLABOUTELECTRONICS
      @ALLABOUTELECTRONICS  7 місяців тому +4

      The de normalized numbers are used to represent numbers which are smaller than smallest possible normalized numbers. In single precision format, the smallest positive normalized number is 1. 0 x 2^-126.
      So, to represent numbers between 0 and this smallest number this denorms are used.
      The thing of the biased exponent holds true only for normalized numbers. For denorms, the exponent is always -126. And the numbers are represented as 0. BBB x 2^-126.
      So, with this representation, the numbers will be less than the smallest possible normalized numbers. For example, 0.11 x 2^-126. I hope, it will clear your doubt.

    • @sunandachowdhury1455
      @sunandachowdhury1455 Місяць тому

      @@ALLABOUTELECTRONICS if For denorms, the exponent is always -126, then how it represents the exponent being all 0?

  • @neelkotkar5978
    @neelkotkar5978 9 місяців тому

    very good explanation. Thanks for helping!!! :)

  • @simonepizzelli3799
    @simonepizzelli3799 10 місяців тому

    Great video!

  • @rmeena6972
    @rmeena6972 11 місяців тому

    awesome