Eigenvalues & Powers of Matrices

Поділитися
Вставка
  • Опубліковано 4 гру 2024

КОМЕНТАРІ • 30

  • @youngidealist
    @youngidealist 7 років тому +7

    Thank you for this. This is exactly what I was stuck on and found that I only needed to search for how eigenvectors can be applied to find your video.

  • @shivanshgupta7492
    @shivanshgupta7492 Рік тому +1

    Very impressive vid
    loved the concept and way u xplained

  • @ziadmathematics
    @ziadmathematics 9 років тому +2

    Thank you, amazing skills

  • @lil7725
    @lil7725 4 роки тому +1

    Thank you so much, this was very clear and understandable :)

  • @esissthlm
    @esissthlm 10 років тому +1

    Thank you! Interesting.

  • @chandjaved1108
    @chandjaved1108 5 років тому

    Very nice brother, good concept

  • @mechintosh
    @mechintosh 2 роки тому

    Perfect!

  • @LearnSpecialEnglish
    @LearnSpecialEnglish 4 роки тому

    Thank you

  • @lionking2424
    @lionking2424 5 років тому

    wonderful

  • @abrehambekele9620
    @abrehambekele9620 11 місяців тому +1

  • @daixtr
    @daixtr 10 років тому

    i noticed that instead of the usual det(A-lambda*I) you are instead using det(lambda*I - A) which resulted to elements of the matrix having reverse signs. Please clarify...

    • @slcmathpc
      @slcmathpc  10 років тому +1

      Dexter Aparicio This way, the characteristic polynomial is always monic even for a square matrix of odd dimension.

  • @segoviapatricio
    @segoviapatricio 10 років тому

    and for n

    • @slcmathpc
      @slcmathpc  10 років тому

      papi chulo If A^n=PD^nP^-1, invert both sides to see that A^-n=PD^-nP^-1. Since D is a diagonal matrix, D^-n is obtained by inverting the individual eigenvalues along the main diagonal. This is of course based on the assumption that A is invertible and diagonalizable.

  • @segoviapatricio
    @segoviapatricio 10 років тому

    Hi, minute 09:24, why did you write the vector (1 -1) and not -1, 1 ??

    • @slcmathpc
      @slcmathpc  10 років тому

      papi chulo Any nonzero multiple of an eigenvector is also an eigenvector for the same eigenvalue; notice that one vector is the negative of the other.

    • @segoviapatricio
      @segoviapatricio 10 років тому

      thanks for the explanation!!! good video.

    • @slcmathpc
      @slcmathpc  10 років тому

      slcmath@pc If A^n=PD^nP^-1, invert both sides to see that A^-n=PD^-nP^-1. Since D is a diagonal matrix, D^-n is obtained by inverting the individual eigenvalues along the main diagonal. This is of course based on the assumption that A is invertible and diagonalizable.

  • @polobobeetricethe3rd567
    @polobobeetricethe3rd567 Рік тому

    hi is there a method for this where lamda is complex or either where there is only one value of lamda(where the quadratic is a perfect square)

    • @slcmathpc
      @slcmathpc  Рік тому

      It works just the same if the eigenvalues are complex numbers. As for your second question, the answer is it depends whether or not the geometric multiplicity matches the algebraic multiplicity; this is slightly more technical so I cannot really explain it in a comment, but suffice to say that not all square matrices can be diagonalized.

  • @Jusexle
    @Jusexle 2 роки тому

    thank you so much my exam is after 2 days

  • @andrewsantopietro3526
    @andrewsantopietro3526 4 роки тому +1

    I hope this works for fractional powers x,o

    • @slcmathpc
      @slcmathpc  4 роки тому +2

      Have you figured it out? ;-)

  • @aymadummeech
    @aymadummeech Рік тому

    Hello BSCS2C
    Aral well :)

  • @richard_darwin
    @richard_darwin 2 роки тому

    massive brain moment

  • @eletricman1998
    @eletricman1998 5 років тому

    Ok so in this video

  • @Mr.Coconut007
    @Mr.Coconut007 Рік тому

    PxDXPinverse=D