Geometric Deep Learning: GNNs Beyond Permutation Equivariance

Поділитися
Вставка
  • Опубліковано 25 гру 2024

КОМЕНТАРІ • 10

  • @Fetrose
    @Fetrose 3 місяці тому

    Very nice presentation. It is so informative, Peter.

  • @HelloWorlds__JTS
    @HelloWorlds__JTS Рік тому +1

    Phenomenal! Thanks, Petar!

  • @vimukthirandika872
    @vimukthirandika872 10 місяців тому +1

    Your explanation are really good!, Thank you!

  • @nicolasgoulet4091
    @nicolasgoulet4091 3 роки тому +3

    Thank you so much for sharing all your work! My honours thesis will be a thing thanks to ideas I got from watching your lectures!

  • @qiguosun129
    @qiguosun129 3 роки тому +1

    Really good lecture about Geometric Deep Learning! Recently, my research paper applying GNN was questioned about the robustness of the model. This lecture gave me a lot of inspiration.

  • @MrAstor69
    @MrAstor69 3 роки тому +1

    Odlično predavanje sve pohvale.

  • @martinschulze5399
    @martinschulze5399 Рік тому

    Awesome lecture, much to learn

  • @yephuang1401
    @yephuang1401 2 роки тому +2

    Extremely insightful! Thanks so much! Also agree that developing >1-WL GNNs using subgraphs and transfer learning (incl. pretraining) would be quite popular this year. Do you have any paper recommendations for latent graph inference?

  • @Janamejaya.Channegowda
    @Janamejaya.Channegowda 3 роки тому +2

    Thank you for sharing.

  • @markadyash
    @markadyash 3 роки тому +2

    GNN has arrived