bootstrap

Поділитися
Вставка
  • Опубліковано 19 січ 2025

КОМЕНТАРІ • 19

  • @ВиталийБредун-ф5р
    @ВиталийБредун-ф5р 10 років тому +2

    Hi, Jeff! Would you like to send history.R of your lesson? I need to test it. Thank you!

  • @johannyalva4457
    @johannyalva4457 6 років тому +1

    hi! i loved your video , even if my mother tongue is not english i was able to understand a 97% ! i would like to learn inference, and multivariate analysis in R , if u have any videos it could help me a lot!! greetings from italy by a Peruvian girl .lol.

  • @MouhssineFakhtaoui
    @MouhssineFakhtaoui 7 років тому +2

    Can you share with us the link to download the PDF ?

  • @SNPolka56
    @SNPolka56 7 років тому +1

    Hi Mr. Leek: Do these sub-samples which are drawn from the sample have smaller size or the same size as the sample?

    • @abel.borges
      @abel.borges 7 років тому +1

      In R, sample(x, replace=TRUE) returns in a vector of size length(x) (assuming x is a vector) samples of x drawn with replacement. The (default/standard) bootstrap method uses indeed sub-samples with the same size as the original sample.

    • @SNPolka56
      @SNPolka56 7 років тому +1

      Thank you very much. So x need not have the same size as the original sample. It seems the standard option implies making copies of the original data.

    • @abel.borges
      @abel.borges 7 років тому

      I'm glad to help. In practice, if you have some computational constraint, you may use sub-samples of smaller size and adjust the "theory" (variance, confidence intervals etc) accordingly. I see no harm in that. The R code is like sample(x, size=n, replace=TRUE). About your last phrase, I think you mean that the bootstrap (bs) samples contain only values already observed in the original sample, which is true, but the values are re-used as they appear in the original sample (following the observed frequencies of smaller or greater values). Bootstrapping is equivalent to sampling from the distribution which puts 1/n probability mass on each x_i (this is the empirical distribution). It converges strongly with n to the true (unknown) distribution from which the original sample came from. This means that, as n grows, bs is like we were sampling from the true distribution function.

  • @Jacob930321
    @Jacob930321 9 років тому +4

    Is this video from some online course? Great video!

    • @juanbilly1364
      @juanbilly1364 3 роки тому

      I know it is pretty randomly asking but do anybody know of a good site to watch newly released tv shows online ?

    • @henryadrien9429
      @henryadrien9429 3 роки тому

      @Juan Billy i use Flixzone. You can find it on google :)

    • @acemoises8991
      @acemoises8991 3 роки тому

      @Henry Adrien Yup, I've been watching on flixzone for since march myself :D

    • @juanbilly1364
      @juanbilly1364 3 роки тому

      @Henry Adrien thank you, signed up and it seems like a nice service :) I really appreciate it!!

    • @henryadrien9429
      @henryadrien9429 3 роки тому

      @Juan Billy happy to help :D

  • @u9772212
    @u9772212 8 років тому

    Great Video! Thanks :)

  • @АлександрВознюк-б8т
    @АлександрВознюк-б8т 6 років тому +1

    Thank you so much

  • @franflan-n5u
    @franflan-n5u 10 років тому +1

    Thanks a lot