Voting Ensemble | Introduction and Core Idea | Part 1

Поділитися
Вставка
  • Опубліковано 2 січ 2025

КОМЕНТАРІ • 38

  • @shubhankarsharma2221
    @shubhankarsharma2221 2 роки тому +17

    He is one of the best Data science teacher .Lots of Respect.

  • @surajJoshiFilms
    @surajJoshiFilms 3 роки тому +16

    I think this is the best channel to study data science algorithms...

  • @__Henry__.
    @__Henry__. Рік тому +4

    11:48 the last three Probabilities written by mistake it will be 0.063 + 0.063 + 0.027 don't be confuse

    • @rajatchauhan4410
      @rajatchauhan4410 Рік тому +1

      Yah

    • @SRKtechhub
      @SRKtechhub 9 місяців тому +1

      yes there is mistake in calculation, if all base model accuracy is less then 51%. if it is 0.3. Then voting or mean is = 3*0.063+0.027. which is 0.216. Which is worst then all three.

  • @Noob31219
    @Noob31219 2 роки тому +5

    I think learning from you is way better than any of the paid course out there

  • @ParthivShah
    @ParthivShah 9 місяців тому +1

    Thank You Sir.

  • @kindaeasy9797
    @kindaeasy9797 7 місяців тому +2

    i think the answer to the question you asked at 5:04 is wisdom of crowd !

    • @indra-zd9zu
      @indra-zd9zu 4 місяці тому +1

      But you have to prove it by mathematic because ml is all about maths

  • @preetisrivastava1624
    @preetisrivastava1624 Рік тому +2

    i never knew hindi can be so powerful tool in this journey of data science.

    • @TheAtulsachan1234
      @TheAtulsachan1234 Рік тому +2

      I am from the north part of India but the job opportunities have brought me down south and I have been living from a decade now. I think I am decent and fairly good in english, but learning in your native and mothe tongue is a diff feeling. It makes you more powerful, allow you dive deeper. And having a teacher like Nitish ji is magical.

  • @vishnupsharma50
    @vishnupsharma50 6 місяців тому +2

    Taking individual probabs as 0.8, 0.7, 0.6, it gives 0.788 as ensemble accuracy. Thus, its not mandatory to have highest accuracy in ensembled model. Currently I don't know why that's the reason.

  • @devamsingh2352
    @devamsingh2352 3 місяці тому

    I cant believe I completed 84 videos with notes within 14 days. Just few days more❤❤

  • @flakky626
    @flakky626 Рік тому

    Wanted to thank you before starting the lecture thanks a lot sir
    You mean a lot to me praying for your always goodness

  • @narendraparmar1631
    @narendraparmar1631 11 місяців тому

    Wonderful Lecture .
    Thanks for your lecture.

  • @shashankpandey1966
    @shashankpandey1966 2 роки тому +1

    you are a great teacher . The best .

  • @hamzasabir6480
    @hamzasabir6480 Рік тому

    Great video!
    It is not always guaranteed to have collective accuracy higher than the individual ones. If models within ensemble are making same error or have same weaknesses, the ensemble may not provide significant improvements.

  • @pvslectures9800
    @pvslectures9800 Рік тому

    Thanku so much sir. Your teaching is miraculous.

  • @chetanpatil2510
    @chetanpatil2510 2 роки тому

    Next level explaination by you sir

  • @ArunKumar_237
    @ArunKumar_237 2 роки тому +1

    Maza aagaya sir ji

  • @123arskas
    @123arskas Рік тому

    12:14 Adding all the probabilities won't come out as 1

    • @TheAtulsachan1234
      @TheAtulsachan1234 Рік тому

      It will. try again

    • @123arskas
      @123arskas Рік тому

      @@TheAtulsachan1234 Nope

    • @__Henry__.
      @__Henry__. Рік тому +1

      @@123arskas11:48 the last three Probabilities written by mistake it will be 0.063 + 0.063 + 0.027 don't be confuse

  • @samiulprangon6100
    @samiulprangon6100 Рік тому +1

    Can anyone tell me how the accuracy were calculated here?

  • @anshulrao2373
    @anshulrao2373 3 роки тому

    Loved the explanation! :)

  • @abhisheksainani
    @abhisheksainani Місяць тому

    Which ensemble algorithm perform well in multiclass classification problem?

    • @AkshatSharma-hy1id
      @AkshatSharma-hy1id 28 днів тому

      Boasting is the prodigy child for every ml project but you can play around things and get you best result, ML is subjective and varies from datasets to datasets

  • @nawarajbhujel8266
    @nawarajbhujel8266 Рік тому

    Thank u .

  • @yashshrivastava1612
    @yashshrivastava1612 2 роки тому

    But isn't it like the points that the first classifier predicted wrong are actually points that are difficult to predict so all of our models are more likely to predict those points wrong.
    Just thinking, The mathematical proof is always valid considering them as independent models.

    • @visheshmp
      @visheshmp Рік тому +1

      No, the points that first classifier predicted wrong is only difficult for that specific model, and our Sir already said we have to use different types of model. So what is difficult for one model might not be difficult for other. What you are saying will be true only when you use same type of model.

  • @riteshgupta1000
    @riteshgupta1000 3 роки тому

    Sir but probability examples looks like boosting ensemble

  • @SatyamBonaparte
    @SatyamBonaparte 9 місяців тому

    u r god

  • @yashjain6372
    @yashjain6372 2 роки тому

    best

  • @MUHAMMADMUBASHIR-m8q
    @MUHAMMADMUBASHIR-m8q 2 місяці тому

    please improve your audio quality

  • @sandipansarkar9211
    @sandipansarkar9211 2 роки тому

    finished watching

  • @sandipansarkar9211
    @sandipansarkar9211 2 роки тому

    finished note making

  • @shubhamdhole5160
    @shubhamdhole5160 5 місяців тому +1

    Additional of all probabilities are not 1 also point raise by
    @vishnupsharma50 is also valid, given proof by Nitish Sir not satisfy here