The Mathematics of Bell Ringing

Поділитися
Вставка
  • Опубліковано 7 лют 2025
  • The mathematics of bell ringing. One thing bell ringers might want to do is ring out all possible combinations of their bells. For example, Plain Bob Minimus is a method that rings all 24 possible combinations of four bells. On the other hand, there are also 24 possible orientations of a cube - in fact underneath the mathematics is the same, and the sequences act as a bridge between the mathematical world of rotations of a cube and the musical world of bell ringing.

КОМЕНТАРІ • 44

  • @ericsurf6
    @ericsurf6 14 років тому +3

    Pretty cool Jim...I really respect the work that you do.

  • @singingbanana
    @singingbanana  14 років тому +2

    @superfluousness321 No, the group of permutations of n bells is S_n, which I can't represent with rotations and reflections of a physical object beyond n=4. But I may do this again someday with something else...

  • @AndyMossMetta
    @AndyMossMetta 14 років тому +1

    That actually sounded lovely as a piece of bell ringing music in itself.

  • @Finne57
    @Finne57 8 років тому +3

    Fantastic fun. James looks so young (in a good way)! The best I've seen.

  • @singingbanana
    @singingbanana  14 років тому +1

    @superfluousness321 This shows that all permutations of four bells (and rotations of a cube) can be generated through repeated use of the permutations (12)(34), (23) and (34).

  • @scotland7yard
    @scotland7yard 14 років тому +3

    next instalment: the mathematics of beetles who can't turn around when they fall on their backs

  • @elton1981
    @elton1981 4 роки тому

    Great to find one of your older videos. What was really annoying was 1 should be the treble not the tenor!

  • @singingbanana
    @singingbanana  14 років тому

    @Thatguy7109 I use both. It always surprises me that some people find that confusing.

  • @grobweiler
    @grobweiler 8 років тому +2

    This is great theory. I very much enjoyed watching but no. 1 needs to be the highest in pitch if it is to help bell ringers.

  • @singingbanana
    @singingbanana  14 років тому

    @boumbh That's it :) Have a closer look for a third permutation.

  • @singingbanana
    @singingbanana  14 років тому

    @TheHungarianCuber It is.

  • @TyYann
    @TyYann 14 років тому

    @nafativedec Nice to meet you too!

  • @boumbh
    @boumbh 14 років тому

    @singingbanana Oops, yes, with only these two permutations you could only make one third of the combinations (two opposite faces of the cube).
    (1,2,3,4) -> (1,2,4,3) every 8 moves.
    roll(90) x yaw(180)

  • @Error081688
    @Error081688 14 років тому

    Was this at MathsJam? Ah, yes I've see the credits now. Well done! I was quite impressed with your abilities as a cubist. That would have been extremely difficult for me to remember, I think.

  • @boumbh
    @boumbh 14 років тому

    There are only two permutations used, alternatively:
    (1,2,3,4) -> (2,1,4,3)
    which corresponds to a roll(180) of the cube
    (1,2,3,4) -> (1,3,2,4)
    which corresponds to a roll(180) x yaw(-90) of the cube
    And you get all the combinations.

  • @superfluousness321
    @superfluousness321 14 років тому

    Cool. Do bell ringers not use any odd permutations then?

  • @superfluousness321
    @superfluousness321 14 років тому

    @singingbanana Oh I see so you get the whole of S_4, but can you ring the changes of not just rotational symmetry but the full reflection group?

  • @AllonsyRapunzel
    @AllonsyRapunzel 5 років тому

    I know this was 8 years ago but it bugs me so much that you start in reverse rounds as the lowest note ought to be the tenor and last bell. Otherwise great vid. Have you tried ringing two at once yet?

  • @PEZenfuego
    @PEZenfuego 14 років тому

    I thought that was Lucas Garron. As others have pointed out, good cuber.

  • @pwed546
    @pwed546 14 років тому

    lucas garron, as in the speedcuber?

  • @Steven_Rowe
    @Steven_Rowe 12 років тому

    That is very interesting , I know the full extent of 8 bells has been rung which is 40320 changes, but let not go to 12 bells as it would take over 38 years on a proper peal of bellls. The longest peal I have rung was 5152 changes of Yorkshire Surprise Major and it took 3hours 27 minutes

  • @anneonimous9306
    @anneonimous9306 3 роки тому

    0:35 I think you're actually talking about permutations, not combinations.

  • @mrtamborineman10
    @mrtamborineman10 14 років тому

    oh haha it is! sorry i hadn't watched the end. Lucas is an awesome Cuber as well!

  • @mrtamborineman10
    @mrtamborineman10 14 років тому

    where is this? Is that Lucas Garron?!

  • @TyYann
    @TyYann 14 років тому

    That was fun!

  • @Error081688
    @Error081688 14 років тому

    I lied. I memorised the sequence with using my rubik's cube, haha. Still, well done!

  • @nitrodavid
    @nitrodavid 14 років тому

    i notice they also have the same shirt colours as there bells, classy

  • @aominaito
    @aominaito 14 років тому

    @PEZenfuego second one from left looks same as Lucas so im pretty sure thats him.

  • @mujump
    @mujump 14 років тому

    Is you name Jim or James

  • @robin888official
    @robin888official 11 років тому

    (Two years late, sorry, I try catching up.)
    English "short" names are sometimes confusing to those who aren't familiar with them. (I'm from Germany.)
    They often seem not to be just abbreviations but completly other names that share the same first letter!
    Jim for James is not a bad example. :-)
    I actually got very confused reading "The picture of Dorian Gray" where Lord Henry was also referred to as "Harry" which isn't shorter neigther in speech *nor* writing!
    If you happen: Thanks for reading!

  • @WiseGuy508
    @WiseGuy508 11 років тому

    Actually in a Numberphile video she said her favourite number was 21.

  • @GyanPratapSingh
    @GyanPratapSingh 12 років тому

    This video does ring a bell.

  • @addjewelry
    @addjewelry 12 років тому

    That was tense.

  • @Epamynondas
    @Epamynondas 12 років тому

    it's easy, you gust grab a sphere and rotate it
    it's the same group because the sphere doesn't change, and the bug is stuck on its back so it can't change either
    MATHEMATICS!!!

  • @Forcalious
    @Forcalious 14 років тому

    Hi people!

  • @AntiCliche
    @AntiCliche 14 років тому

    I... I'm not entire sure I understand. -_-

  • @austreneland
    @austreneland 6 років тому

    FINALLY!!!!!!!

  • @musikSkool
    @musikSkool 11 років тому

    mm-hmm, you are mathematicians, then whats her number? (okay, bad joke)

  • @WilliamRussell314
    @WilliamRussell314 14 років тому

    You so crazy :P :D

  • @grande1899
    @grande1899 14 років тому

    first

  • @TheCrazyYoyo
    @TheCrazyYoyo 14 років тому

    i bet some people ask you this and you might have already awnsered, but what is your IQ?

  • @aominaito
    @aominaito 14 років тому

    @TheHungarianCuber It is.