Manjul Bhargava: What is the Birch-Swinnerton-Dyer Conjecture, and what is known about it?

Поділитися
Вставка
  • Опубліковано 17 січ 2025

КОМЕНТАРІ • 47

  • @dcterr1
    @dcterr1 4 роки тому +30

    Very good lecture! I never really understood the BSD conjecture before, but now I feel like I have a pretty good handle on what it says. Hope I can prove it someday, or at least some key results leading up to its proof.

    • @mashmax98
      @mashmax98 4 роки тому +10

      there are some really weird videos in your favs

    • @ashutoshchakravarty2669
      @ashutoshchakravarty2669 3 роки тому +2

      @@mashmax98 💀 dude is obsessed with feet

  • @davidwilkie9551
    @davidwilkie9551 Рік тому +2

    Prizes for Academic work are a bit of a mystery to students who have their skills in agriculture or physical activity, so the idea of an approach to Mathematical Conjecture from a Condensation Chemistry POV is more effective than turning the pages of recorded history.

  • @georgemissailidis3160
    @georgemissailidis3160 4 роки тому +3

    12:05 that solution there is actually a special case of a more general theorem. Use the fact that:
    (m² - n²)² + (2mn)² = (m² + n²)² for all m, n. Now divide both sides by (m² + n²)².
    The case in the video is m=s and n=1.

    • @AnitaSV
      @AnitaSV 4 роки тому +1

      s=m/n in your equal m and n are integers, in this it is rational. So effectively they both cover all solutions.

    • @kidzbop38isstraightfire92
      @kidzbop38isstraightfire92 4 роки тому

      Sorry for the very dumb question, but why is Eq. (1) in his video y = s(x + 1) ? I thought the slope is y = mx + b....so how did we determine that the slope (s) is equal to the y-intercept (b)? I feel like I missed something very easy but I can't find where I went wrong. Is it because the unit circle has a y-intercept at {0,1}? Why then cant we use y = s(x - 1), since {0,-1} is also a y-intercept?

    • @hvok99
      @hvok99 2 роки тому

      @@kidzbop38isstraightfire92 No bad questions. You are right that the equation of a line is given by y = mx+b, and slope defined as rise over run. Here the run from the point (-1,0) to the y-axis is 1 and the rise is how much you went up after one step.. which is the slope. The y intercept IS the slope here. So we can rewrite the equation as y=sx+s and factor out the m to get y=s(x+1)
      To your point about the negative values, they still work here as plugging in negative slopes will make this work as well.

    • @kidzbop38isstraightfire92
      @kidzbop38isstraightfire92 2 роки тому +1

      @@hvok99 yep of course, that makes sense now. I knew I was missing something simple. Thanks for explaining it well bro!

  • @darylcooper6090
    @darylcooper6090 4 роки тому +4

    Wonderful lecture !

  • @danlds17
    @danlds17 Рік тому +2

    Another stupid question: Why didn't you start with a more general 2-variable cubic (which includes y^3) ? Excellent talk !

  • @kidzbop38isstraightfire92
    @kidzbop38isstraightfire92 4 роки тому +3

    10:24 sorry for the stupid question, but why is the slope equation y = s(x + 1) ? I thought y = mx + b....how did we determine that the slope (s) is the y-intercept (b)?

    • @ikavodo
      @ikavodo 4 роки тому +2

      This a specific linear equation for a line with slope s passing through the point (-1,0). We have s= (y - y0)/ (x - x0), so simply plug in P's coordinates to get y = s(x + 1)

    • @TheMartian11
      @TheMartian11 3 роки тому +3

      Well, in Europe and America usually only the y-intercept form is only taught, which is y=mx+c, where c is the y-intercept.
      there's actually another form you can derive using the x-intercept instead, which is y=m(x-d) where d is the x-intercept.
      the guy said m=s and d=-1 hence, y=s(x+1)

    • @MK-13337
      @MK-13337 3 роки тому +2

      Starting from (-1,0) the slope is just rise/run. So when you go an unit length in x (from -1 to 0) you go up (or down) a length equal to the slope. So your coordinates after a unit step in the x direction will be (0,s) giving you the y intercept as s.

    • @kidzbop38isstraightfire92
      @kidzbop38isstraightfire92 3 роки тому +1

      Thanks everyone for the help! After reading your replies, I realize how elementary this was 🤦‍♂️

  • @kamilziemian995
    @kamilziemian995 3 роки тому +3

    Excuse me, in the description in the title of third lecture (this lecture) is "Birch--Swinnerton-Dyer". I believe that is a type and it should be "Birch-Swinnerton-Dyer", with one "-" removed.

    • @Darrida
      @Darrida Рік тому +1

      Sir Peter Swinnerton-Dyer is English baronet.

    • @kamilziemian995
      @kamilziemian995 Рік тому

      @@Darrida Thank you for pointing it to me.

  • @kamilziemian995
    @kamilziemian995 3 роки тому +3

    Clear, interesting lecture that is pleasure to hear.

  • @sunshine4164
    @sunshine4164 3 роки тому +2

    His silence speaks more than his words. How is he at computers ?

  • @fabiangn8022
    @fabiangn8022 Рік тому

    Gracias por compartir

  • @indranilbiswas629
    @indranilbiswas629 3 роки тому +1

    Nice ❤️

  • @dr.rahulgupta7573
    @dr.rahulgupta7573 4 роки тому

    अद्भुत अति अद्भुत ।डा राहुल ।

  • @madvoice3703
    @madvoice3703 3 роки тому

    THE RIGHT STATEMENT IS BEABLE PRIZE

  • @grimaffiliations3671
    @grimaffiliations3671 3 роки тому +4

    No idea what I’m doing here, don’t even know my fractions

    • @christopherc168
      @christopherc168 6 місяців тому +1

      You can learn, keep asking stupid questions , fail and fuck up till you dont , wisdom comes from experience, experience comes from good and bad judgement, the path to knowing and understanding is endless.

  • @thdgus7895
    @thdgus7895 Рік тому

    La démonstration de π(1-ap/P)? Soit la serie Fp(k)=1/2^k+1/3^k + 1/5^k''''''''' vers l infini la série des premiers quelques soit k de N π(1-1/p^k)=1-Fp(k)+la somme de 1 vers l infini de 1/p^n×fp(P+n) et la somme de 1/p^n×fp(P+n)=1/2fp(k)^2 - 1/2 Fp(2k) d ou π(1-1/p^k)=1-fp(k) +1/2fp(k)^2 -1/2fp(2k) quelques que soit k dans N il y a cette égalité ' on peut vérifier π(1-1/p^k)=e^lnπ(1-1/p^k)=e^-fp(k)-@ le symbole @ le Epsilons donc π(1-1/p^k)=e^-fp(k)-@=1-fp(k)+1/2fp(k)^2 -1/2fp(2k) quelques soit k dans N pour le produit π(1-ap/p)=1/Le(1)=e^lnπ(1-ap/p)=e^-Lp(1)-@ d ou Lp(1)= lnLE(1)/e^@ d ou π(1-ap/p)=1/2(Lp(1)-1)^2 +1/2(1-Lp(2))=t(ln(Le(1))^2 l égalité π(1-1/p^k) =1-fp(k)+1/2fp(k)^2+1/2fp(2k)=e^-fp(k)-@ est valable quelque soit k appartient à N

  • @LolIGuess123
    @LolIGuess123 3 роки тому

    I think the mic used in the seminar is too close to the mouth, lots of lip smacking and breathing distracts from the talking. Maybe run an EQ over the audio and filter the high frequencies

    • @wtpollard
      @wtpollard 3 роки тому

      Not a helpful comment. Do you really think the people who organized this lecture are reading these UA-cam comments?

    • @famousrapper8561
      @famousrapper8561 2 роки тому

      I love lipsmacking

    • @poodook
      @poodook 6 місяців тому

      @@wtpollardwas your comment any more helpful?

  • @success_habbit469
    @success_habbit469 3 роки тому

    i am not kidding. this problem is going to be solved in upcoming 2 years.project is on progress. believe me