Can you calculate the length AB? | (Circles) |

Поділитися
Вставка
  • Опубліковано 8 січ 2025

КОМЕНТАРІ • 49

  • @yenerkorkmaz4272
    @yenerkorkmaz4272 День тому +26

    Just move AB 3 points where B meets Q, and you have a right triangle 16,8,AB

    • @phungpham1725
      @phungpham1725 День тому +1

      @yenerkorkmaz:
      Very nice solution! Thank you so much!❤

    • @zawatsky
      @zawatsky День тому

      А ведь и правда. Про прямой угол я и забыл.

    • @Micboss1000
      @Micboss1000 День тому +1

      Yes, this is a much simpler solution, thinking outside the box!

    • @Z-eng0
      @Z-eng0 22 години тому +1

      Actually that's exactly what I was thinking, since I was looking up lines tangent on 2 circles recently and found their construction methods, AB is an internal tangent of the 2 circles, which makes it equal to a segment tangent on a circle of center P and radius R1+R2=8, from point Q

    • @jhill4874
      @jhill4874 19 годин тому +1

      Exactly my approach! Simple and to the point.

  • @gelbkehlchen
    @gelbkehlchen День тому +7

    Solution:
    If you move the line AB parallel upwards so that B coincides with Q, you get a right-angled triangle with the hypotenuse PQ = 16 and the leg 5+3 = 8, so that you can use the Pythagorean theorem to calculate the other leg AB:
    AB = √(16²-8²) = √192 = √(64*3) = 8*√3 = 13.8564

  • @sandeep1234sanu
    @sandeep1234sanu День тому +4

    AB²(TCT)= PQ²-(PA+BQ)²
    i.e AB²=16²-(5+3)²
    =256-64
    AB² =192
    Or AB =√192
    =8√3 ans.

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq День тому +1

    Sir,
    I am astonished. You did not use your favourite
    30-60-90 special triangle theory in working out the length of
    AC & BC
    when hypotenuse and leg are 10 and 5
    & 6 and 3.
    Thanks a lot.

  • @murdock5537
    @murdock5537 День тому +2

    Nice! PQ = 16 = PC + QC = (16 - k) + k; sin⁡(CAP) = sin⁡(CBQ) = 1 → PCA = QCB = δ →
    sin⁡(δ) = 5/(16 - k) = 3/k → k = 6 → sin⁡(δ) = 1/2 → tan⁡(δ) = √3/3 → BC = 3√3 → AC = 5√3 → AB = 8√3

  • @santiagoarosam430
    @santiagoarosam430 День тому +2

    CQ=c---> PQ=5c/3 +c=16---> c=6---> CP=16-6=10 ---> CA=√(10²-5²)=5√3---> CB=(3/5)5√3 =3√3 ---> AB=8√3.
    Gracias y saludos

  • @zawatsky
    @zawatsky День тому +2

    Помню, что по какой-то там теореме APǁBQ, тогда ▲АСР~▲BCQ, пропорцию видим - 3 к 5. Тогда РС=5х, CQ=3х, 5х+3х=8х=16⇔х=2. Отсюда РС=10, CQ=6. BC:=у. По теореме о касательной и секущей 9*3=у²=27⇔y=3√3. Возвращаясь к первоначальной пропорции, видно, что АС в таком случае будет 5√3, общая длина тоже становится очевидной - 8√3.

  • @davidellis1929
    @davidellis1929 День тому +1

    Another solution is to complete the rectangle ABQD. This makes a right triangle PDQ whose hypotenuse PQ is 16 and whose shorter leg PD is 8. This is a 30-60-90 right triangle, so the other leg DQ=8*sqrt(3), and AB is the opposite side of the rectangle, hence also 8*sqrt(3).

  • @himo3485
    @himo3485 День тому +2

    PC=5x QC=3x 8x=16 x=2
    PC=10 QC=6
    AC=√[10²-5²]=5√3     BC=√[6²-5²]=3√3
    AB=AB+BC=8√3

  • @zupitoxyt
    @zupitoxyt День тому +1

    Here I'm ready and prepared for this.
    Very great question professor ☺️

  • @OLYMPIADQUESTIONBANK
    @OLYMPIADQUESTIONBANK День тому +2

    Another method, pls pin
    Apc and cbq are similar triangles. the ratio b/w PC and cq is 5:3 , and pc+cq=16, so pc=10cm and cq=6cm, if we consider triangle PAC we get AC=5×root 3 and in triangle cbq we get cq=3root3 so the length AB=8 root 3

  • @marioalb9726
    @marioalb9726 День тому +1

    Pytagorean theorem:
    d² = 16² - (5+3)²
    d = 8√3 = 13,856 cm ( Solved √ )

  • @harikatragadda
    @harikatragadda День тому +1

    Extend QB to QR such that RP is perpendicular to AP.
    ∆QRP is a Right triangle with QR=3+5=8 and hypotenuse PQ = 16
    PR= AB =8√3

  • @jamestalbott4499
    @jamestalbott4499 День тому

    Thank you!

  • @joeschmo622
    @joeschmo622 День тому +3

    Woohoo! I did it in my head just from the thumbnail!
    I figured it was gonna get messy with the sqrt75 but simplified to 5sqrt3 then got 3sqrt3 being that they're proportional, so the total was 8sqrt3.
    ✨Magic!✨

  • @marcgriselhubert3915
    @marcgriselhubert3915 День тому +1

    Triangles PAC and CBQ are similar (same angles). So PC/PA = QC/QB, or PC/5 = QC/3 = (PC+QC)/(5+3) = PQ/8 = 16/8 = 2, (*)
    so we have: PC = 10 and QC = 6.
    PAC and QBC are then 30°-60°-90° triangles, so AC = sqrt(3).PA = 5.sqrt(3) and BC = sqrt(3).QB = 3.qqrt(3), and finally AB = AC + BC = 8.sqrt(3).
    (*) If a/b = c/d, then a/b = c/d = (a+c)/(b+d), naturally with b, d and b+d non equal to 0.

  • @alexundre8745
    @alexundre8745 День тому

    Boa tarde Mestre
    Obrigado pela aula

  • @AmirgabYT2185
    @AmirgabYT2185 День тому +2

    AB=8√3≈13,856≈13,86

  • @giuseppemalaguti435
    @giuseppemalaguti435 День тому +1

    Teorema del coseno 16^2=5^2+(AB^2+3^2)-2*5*√...cos(90+arctg3/AB)...AB^2=256-25-9-30=192

  • @davidellis1929
    @davidellis1929 День тому

    Once you know the two right triangles are similar, the ratio is 5:3, so the line of centers is split into segments of length 5c and 3c, That makes 8c=16, so c=2 and the hypotenuses are 10 and 6. Since the hypotenuse of each triangle is twice a leg, the triangles are 30-60-90 triangles, so the common internal tangent is 5*sqrt(3)+3*sqrt(3), which is 8*sqrt(3).

  • @unknownidentity2846
    @unknownidentity2846 День тому +1

    Let's find the length:
    .
    ..
    ...
    ....
    .....
    Since AB is a tangent to both circles, we know that ∠PAC=∠QBC=90°. Additionally we have ∠ACP=∠BCQ. Therefore, ACP and BCQ are similar triangles and we can conclude:
    CP/CQ = AP/BQ = 5/3 ⇒ CP = (5/3)CQ
    CP + CQ = PQ
    (5/3)CQ + CQ = 16
    (5/3)CQ + (3/3)CQ = 16
    (8/3)CQ = 16
    ⇒ CQ = 16*3/8 = 6
    ⇒ CP = (5/3)CQ = (5/3)*6 = 10
    By applying the Pythagorean theorem to the right triangles ACP and BCQ we obtain:
    AP² + AC² = CP² ⇒ AC² = CP² − AP² = 10² − 5² = 100 − 25 = 75 ⇒ AC = √75 = 5√3
    BQ² + BC² = CQ² ⇒ BC² = CQ² − BQ² = 6² − 3² = 36 − 9 = 27 ⇒ BC = √27 = 3√3
    Now we are able to calculate the length of AB:
    AB = AC + BC = 5√3 + 3√3 = 8√3
    Best regards from Germany

  • @cyruschang1904
    @cyruschang1904 День тому

    We are looking at two similar right triangles whose linear ratio = 5 : 3
    The sum of their hypotenuses = 16, so their respective hypotenuse = 16(5/8) & 16(3/8) = 10 & 6
    We can then calculate AB = √(10^2 - 5^2) + √(6^2 - 3^2) = √75 + √27 = 8√3

  • @sebasiegrist9341
    @sebasiegrist9341 День тому +1

    I realized 5/8 of 16 would be part of one triangle and 3/8 part of the other one. Then you got 5-10 and 3-6 which are 30-60-90 numbers.

  • @quigonkenny
    @quigonkenny День тому

    As AB is tangent to circle P at A and circle Q at B, then ∠CAP = ∠CBQ = 90°. As ∠PCA and ∠QCB are vertical angles and thus equal, then ∆CAP and ∆CBQ are similar triangles.
    QC/QB = PC/PA
    QC/3 = PC/5
    3PC = 5QC = 5(16-PC)
    3PC = 80 - 5PC
    8PC = 80
    PC = 80/8 = 10
    CA² + PA² = PC²
    CA² + 5² = 10²
    CA² = 100 - 25 = 75
    CA = √75 = 5√3
    CB/QB = CA/PA
    CB/3 = 5√3/5 = √3
    CB = 3√3
    AB = CA+CB = 5√3 + 3√3
    [ AB = 8√3 ≈ 13.86 units ]

  • @Waldlaeufer70
    @Waldlaeufer70 17 годин тому

    (AB) (AB) = 16*16 - (5 + 3) (5 + 3)
    (AB) (AB) = 256 - 64 = 192
    AB = √192
    AB = √(64 * 3) = 8√3

  • @nexen1041
    @nexen1041 День тому

    Shift AB upward towards the center of small circle. You will end up having right triangle with 8 unit length, AB and hyp=16 unit length. It is 30,60,90 triangle with AB= 8 sqrt(3)
    DONE

  • @raghvendrasingh1289
    @raghvendrasingh1289 День тому

    👍
    Length of direct conmon tangent = sqrt { PQ^2 - ( difference of radii)^2 }
    Length of transverse common tangent = sqrt { PQ^2 - ( sum of radii)^2 }
    where PQ = distance between centres of circles.

  • @alexniklas8777
    @alexniklas8777 День тому

    From point Q, parallel to AB, to the intersection with the continuation of PA.
    AB= √(16^2-8^2)= 8√3

  • @Muladeseis
    @Muladeseis 15 годин тому

    From the original image, you didn't say that A and B are tangential points, you just added then that AB is tangent to both circles. From the screenshot image, why would the 2 circles need to be lined up like that? By not stating that AB is a tangent line, it could have several solutions. It is only when you say that it's a tangent... I mean, from the original image, you can just move A and B anywhere, and you can have circles of radius 5 and 3, PQ equal 16, and AB has many values, but in those cases AB is not a tangent line.

  • @phungpham1725
    @phungpham1725 День тому +1

    1/The two triangles PAC and QBC are similar so,
    CP/AP=CQ/QB =(CP+CQ)/(AP+QB)=16/8=2
    --> CP= 2AP= 10 and CQ= 2QB=6
    --> the two triangles mentioned above are special 30-60-90 ones
    -> AC= 5sqrt3 and BC= 3sqrt3
    --> AB = 8sqrt3😅😅😅

  • @JayanthRG-ei9qs
    @JayanthRG-ei9qs День тому

    Nice video sir

  • @soli9mana-soli4953
    @soli9mana-soli4953 День тому +2

    8sqrt3

  • @jtechnicalgaming7831
    @jtechnicalgaming7831 День тому

    Good question sir
    I am happy that I solved it 😊😊😊

  • @JoanRosSendra
    @JoanRosSendra 11 годин тому

    PAC~CBQ===>
    5/3=PC/(16-PC)===>
    PC=10
    Ambos triángulos son notables (K, 2K y K raíz de 5, por tanto:
    AC = 5 raíz de 5,
    CB = 3 raíz de 5
    AB = 8 raíz de 5
    Saludos

  • @wackojacko3962
    @wackojacko3962 День тому

    @ 9:12 X²-3=0 ...🤔 Irrational numbers bore me half to death. They just don't have any quality. Take π for example, ...now that number has brilliance! 😊

  • @sorourhashemi3249
    @sorourhashemi3249 День тому

    Thanks . I got the exact result 13.8, but the length of a in my way is 9. (5+3=8-16=8/2=4 so a =9). Tri.pac= 25+x^2 =81 x=7.48 and tri. Qbc y^2+9=49==y=6.32, so 7.48+6.32=13.8. Isn't it so strange?

  • @sergioaiex3966
    @sergioaiex3966 День тому

    Solution:
    AB = AC + BC ... ¹
    So, we must find AC and BC length
    Since ∆ ACP and ∆ BCQ are similar by AA, we have proportions
    Hence:
    CP/AP = CQ/BQ
    CP/CQ = AP/BQ
    CP/CQ = 5/3
    CP = 5k
    CQ = 3k
    PQ = 16
    PQ = CP + CQ
    16 = 5k + 3k
    8k = 16
    k = 2
    Applying Pythagorean Theorem in ∆ ACP:
    AP² + AC² = CP²
    5² + AC² = (5k)²
    25 + AC² = 25k²
    AC² = 25k² - 25
    AC² = 25 (2)² - 25
    AC² = 75
    AC = 5√3 ... ²
    Once again, applying Pythagorean Theorem, now in ∆ BCQ:
    BQ² + BC² = CQ²
    3² + BC² = (3k)²
    9 + BC² = 9k²
    BC² = 9k² - 9
    BC² = 9 (2)² - 9
    BC² = 27
    BC = 3√3 ... ³
    Final Step
    Substituting ² and ³ in Equation ¹, we have:
    AB = 5√3 + 3√3
    AB = 8√3 Units ✅
    AB ≈ 13.8564 Units ✅

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho День тому

    Is that a Bicycle?

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho День тому

    MY RESOLUTION PROPOSAL :
    01) AP = 5 lin un
    02) BQ = 3 lin un
    03) 5 + 3 = 8 ; R = 5 :: 3 or R = 3 :: 5
    03) We must keep this Linear Proportional Ratio in every Linear Measures, between AP and BQ.
    04) Dividing PQ = 16, in 8 Equal Parts we get : (16/8) = 2
    05) CP = 5 * 2 = 10 lin
    06) CQ = 3 * 2 = 6 lin un
    07) Checking : 10 + 6 = 16 : Fact Checked!!
    08) BC^2 = QC^2 - 9 ; BC^2 = 36 - 9 ; BC^2 = 27 ; BC = sqrt(27) lin un ; BC = [3*sqrt(3)] lin un
    09) AP^2 = PC^2 - 25 ; AP^2 = 100 - 25 ; AP^2 = 75 ; AP = sqrt(75) lin un ; AP = [5*sqrt(3)] lin un
    10) AB = [3*sqrt(3) + 5*sqrt(3)] lin un
    11) AB = 8*sqrt(3) lin un
    Therefore,
    MY BEST ANSWER IS :
    Line AB Length is equal to approx. 13,86 Linear Units. Exact Form = (8*sqrt(3)) Linear Units.