A New Year 2025 Math Fact

Поділитися
Вставка
  • Опубліковано 13 січ 2025

КОМЕНТАРІ • 79

  • @darrenlo9802
    @darrenlo9802 18 днів тому +146

    Fun fact: 2025 = (20+25)^2

    • @AnshulPrajapati-n9l
      @AnshulPrajapati-n9l 18 днів тому +6

      Noice

    • @dougr.2398
      @dougr.2398 13 днів тому +1

      @AnshulPrajapati-n9lnoise? Not noice!! 😂

    • @FrostedPurpleHaze
      @FrostedPurpleHaze 13 днів тому +1

      i was trying to find since mid 2024 that have someone did this observation, and i was surprised to find how can peoples not see this that the year 2025 can be written in this form (20+25)^2 . Because there is no 4 digit year or may be 3 too that can be written in this format till this day. (whole square of sum of first and last 2 digits of an year is exactly that year. I feel mathematicians gonna remember this year when they do realize. Such an amazing year.

  • @caspermadlener4191
    @caspermadlener4191 18 днів тому +43

    The fact that 2025 is a square also means it has unusually nice factorisation, 2025=3⁴·5².
    I remember 2023=7·17², and 2016=2¹¹-2⁵=2⁵·3²·7 as other years with surprisingly small primes.
    Factorising the year is tradition when preparing for the IMO, since it is common to be used in a problem.

  • @Ninja20704
    @Ninja20704 18 днів тому +42

    The first perfect square year since 1936 (44^2), and we won’t get another one until 2116 (46^2). What a great year. 😁
    (Also, anyone born in 1980 exactly will turn 45 in the year 45^2)

  • @JadeLivao
    @JadeLivao 10 днів тому +1

    This video is a true gem! ✨ Connecting the New Year of 2025 to the sum of the first nine positive cubes and integers is fascinating. The visual demonstrations and proofs are brilliantly done, making complex concepts easy to grasp. Thank you for making math so engaging and understandable! Can't wait for more amazing content. 📚👏

  • @henceforthhans
    @henceforthhans 18 днів тому +11

    what a numerical year this is!!!!!

  • @GaurangAgrawal2
    @GaurangAgrawal2 18 днів тому +48

    Fun Fact: 2025 is a perfect square of 45 and it is the only year with perfect square since the year 1936 which was a perfect square of 44.
    Edit: The next perfect square year will be that of 46, which is the year 2116.
    I will be most likely dead by that point of time. 😅

    • @Ninja20704
      @Ninja20704 18 днів тому +4

      Another fun fact along the same line: people who are born in 1980 exactly will turn 45 in the year 2025 (45^2). Neat right?

    • @GaurangAgrawal2
      @GaurangAgrawal2 18 днів тому +2

      @Ninja20704 The leap year blessed 2025 with crazy coincidences 😅

  • @PRIYANSH_SUTHAR
    @PRIYANSH_SUTHAR 14 днів тому +2

    Happy New Year to all watching this video and the creator of the wonderful channel 😊

  • @fantastic-b2m
    @fantastic-b2m 16 днів тому +7

    7:20 i thought it was factorial of 2025

  • @Salamander876
    @Salamander876 18 днів тому +12

    I hope 45^2 goes well. 🙏

    • @MathVisualProofs
      @MathVisualProofs  18 днів тому +1

      👍

    • @leif1075
      @leif1075 16 днів тому

      ​@@MathVisualProofsBUT arent you lewving oitnthe buggest issie HOW wluld AMYONE arrive at the formula you prove ny induction ar around 3:00? How epuld somepne first deduce that the sum ld.cubes equals thenswuare pfnthe sum of the integers
      Why did ypu leave out the most inprotsnt step all due respect? Thanks for sharing

    • @MathVisualProofs
      @MathVisualProofs  16 днів тому

      @@leif1075 I guess the main way would be just to study sum of cubes and realize they are all squares. Once you square root you realize they are squares of triangular numbers. The visual shows this happening so that was the motivation for this video.

  • @SanjilDhakal-1729
    @SanjilDhakal-1729 6 днів тому +1

    2025 is going to be complex ,odd and unhappy But ,wholly Real ,natural and composite of Abundant positiveness . believe in your self but don't be a Narcissist squarely.

  • @floppy8568
    @floppy8568 17 днів тому +3

    ...Wow. That makes 2025 even more special for me. I noticed that it's 45², but not that 45=1+2+3+4+5+6+7+8+9.

    • @natanael4441
      @natanael4441 15 днів тому

      Encloses it:
      (1+2+3+4+5+6+7+8+9)²

  • @stickfiftyfive
    @stickfiftyfive 11 днів тому

    Also, 2025 is among the first few elements in this self-referencing iterated sequence, via Domotro from Combo Class.
    Where T(n) is a triangular number,
    and with n > 1:
    T(2) = 3
    3^2 = 9
    T(9) = 45
    45^2 = 2,025
    T(2,025) = 2,051,325
    2,051,325^2 = 4,207,934,255,625
    T(4,207,934,255,625) = 8,853,355,349,833,265,389,198,125
    Tn^2 = 78,381,900,950,421,300,982,881,904,787,876,752,731,430,503,515,625
    k = sum of first n cubes
    n = 2, k = 9
    n = 9, k = 2,025
    n = 2,025, k = 4,207,934,255,625
    k = 78,381,900,950,421,300,982,881,904,787,876,752,731,430,503,515,625

  • @nathang4774
    @nathang4774 12 днів тому +1

    This math made me happy, cause i like math, thank you! :]

  • @ARGS168
    @ARGS168 12 днів тому +1

    Happy new year: Math Edition 🗣🔥🔥🔥🎉🎉🎉🎉🎉🎉

  • @Trazy_999
    @Trazy_999 5 днів тому +1

    Bro this doesn’t work in the new math update! 💀

  • @fframemrl
    @fframemrl 12 днів тому +1

    i want to see you speedrun phytagorean theorem proofs, but some of them may be not seen as visual in a some sense

    • @MathVisualProofs
      @MathVisualProofs  12 днів тому +1

      I have a video with 10 visual proofs in under 8 mins on my channel. 😀

  • @appybane8481
    @appybane8481 18 днів тому +1

    2:00 I find doing induction without intermediate step to be more beautiful:
    I'll use Sum[m,n](a_k) to denote sum of a_k from k=m to n.
    It is obvious that Sum[1,1](k^3)=(Sum[1,1](k))^2
    Now assume (Sum[1,n-1](k))^2=Sum[1,n-1](k^3)---(1)
    Consider (Sum[1,n](k))^2=(Sum[1,n-1](k)+n)^2
    =(Sum[1,n-1](k))^2+2n*Sum[1,n-1](k)+n^2
    (By(1)): =Sum[1,n-1](k^3)+2n*n(n-1)/2+n^2
    =Sum[1,n-1](k^3)+n^3-n^2+n^2
    =Sum[1,n-1](k^3)+n^3
    =Sum[1,n](k^3)

    • @MathVisualProofs
      @MathVisualProofs  17 днів тому

      Yeah that’s nice but it still needs the sum of integers formula so that’s why I split them here 😀

  • @МихаилРудой-ы7н
    @МихаилРудой-ы7н 11 днів тому

    the sum of cubes of natural numbers from 1 to n is equal to the square of the sum of natural numbers from 1 to n, where n is any number

  • @Leandro-vy7nj
    @Leandro-vy7nj 15 днів тому +1

    The sum of cubes being equal to the squared sum of integers is kinda reminiscent of Stokes Theorem in a weird way.

  • @dhwaniswhistling1219
    @dhwaniswhistling1219 18 днів тому +5

    2025 is also a Harshad number!
    Actually 2022,2023,2024 and 2025 are harshad numbers

    • @MathVisualProofs
      @MathVisualProofs  18 днів тому +2

      Do you know the longest consecutive streak is 20? Will never find 21 in a row :)

    • @dhwaniswhistling1219
      @dhwaniswhistling1219 18 днів тому +1

      @@MathVisualProofs wow, that's so cool!

  • @maaamiyaagency1654
    @maaamiyaagency1654 17 днів тому +2

    2025 , when mathematics starts to take over this world ☺️

  • @_Carl_the_NPC_
    @_Carl_the_NPC_ 13 днів тому +1

    happy new year

  • @Geek37664
    @Geek37664 18 днів тому +11

    I turn 45 next year

    • @bagelnine9
      @bagelnine9 18 днів тому +6

      So according to Matt Parker, you were born in 1980.

    • @IntrovertedSeekerFreePlayer
      @IntrovertedSeekerFreePlayer 12 днів тому +1

      Congrats, you turned your age in the year of your age squared

  • @ÞeOfficialCeresouslyAnimatesYT
    @ÞeOfficialCeresouslyAnimatesYT 18 днів тому +4

    You posted this video too early it’s still December 26th

  • @SecretOcelots
    @SecretOcelots 11 днів тому

    I will try to live to 46^2 year to remember this video.

  • @beautyofinfinity2024
    @beautyofinfinity2024 13 днів тому +3

    I will only watch this clip upto 20:25

  • @roadrashfifa21
    @roadrashfifa21 16 днів тому

    We have the formula for sigma i^3. We have the formula for sigma i. So, aren't these enough to show the result?
    I mean, we don't need induction to prove this right?
    We need induction to prove the formulas of sigma i and sigma i^3?

  • @bagelnine9
    @bagelnine9 18 днів тому +3

    Anything special about 2024?

    • @MathVisualProofs
      @MathVisualProofs  18 днів тому +4

      Tetrahedral number! (Go check my short from last near around new years).

    • @Geek37664
      @Geek37664 18 днів тому +2

      @@bagelnine9 2024 = 45² - 1² = (45-1)(45+1) = 44 × 46

    • @davidbatista1183
      @davidbatista1183 13 днів тому

      Liverpool lost only ONE game in the whole 2024 !! Leading the Premier League w/8 pts and leading Champions invictus !! ⚽️🔥
      PS: and Salah has broken ... I don't know how many records this year alone ... and it's only half season!!! 😳 🥳🥳🥳

    • @davidbatista1183
      @davidbatista1183 13 днів тому

      If 45^2 is only (2024)^(1/2) as good for Liverpool, it'll be awesome !!!

  • @francisfournier3177
    @francisfournier3177 11 днів тому

    2025 is also 12×3+(4+5)×(6+7)×(8+9).

  • @jonathandyment1444
    @jonathandyment1444 16 днів тому

    It's still 2024 and I haven't heard anyone but myself point out that 2024 is a betrothed number, affianced to 2295. The lesser others are 1925 and 1050, 1575 and 1648, 195 and 140, and 75 and 48. So 2024 is the 9th betrothed number.

    • @maikotter9945
      @maikotter9945 14 днів тому

      ein Beitrag des Montages, 30. Dezember 2024
      What are "betrothed numbers"?
      to y´all: Merry Christmas and a happy new year "45²".

  • @trwn87
    @trwn87 18 днів тому +3

    Too early for this, otherwise a very interesting property of 2025. Also, why does it say "2025!" at the end of the video? Is that a factorial? (I'm joking.)

  • @Cubicksruber994
    @Cubicksruber994 18 днів тому +5

    This video has 314 views as of posting this comment (pi)

  • @TheProblemSolver_01
    @TheProblemSolver_01 13 днів тому +2

    2025 is a mathematical year
    ua-cam.com/users/shortsVrgbYYMQlc4?si=IqVd0CCH9_E18552

  • @maikotter9945
    @maikotter9945 14 днів тому

    ein Beitrag des Montages, 30. Dezember "45²-1"
    I have found out a correllation between π [= "Pi"] and the number 2025.
    2(π³)² + 2π² + 3π³ + 3π ~ 2,025.222 ~ MMXXV
    π ~ 3.142 ~ III
    π³ ~ 31.006 ~ XXXI
    π^π ~ 36.462 ~ XXXVI
    (π³)² ~ 961.389 ~ CMLXI
    2(π³)² + 2π² ~ 1,922.778 ~ MCMXXIII
    2(π³)² + 2π² + π³ ~ 1,953.78 ~ MCMLIX
    2(π³)² + 2π² + 2π³ ~ 1,984.791 ~ MCMLXXXV
    2(π³)² + 2π² + 3π³ ~ 2,015.997 ~ MMXVI

  • @_Carl_the_NPC_
    @_Carl_the_NPC_ 13 днів тому +1

    cool

  • @marciorjusto
    @marciorjusto 18 днів тому +2

    👏🏽👏🏽👏🏽

  • @bitti1975
    @bitti1975 14 днів тому

    3:58: Why do you think the story is a myth? I think it's well corroborated, especially since Gauß himself was fond of telling it.

    • @MathVisualProofs
      @MathVisualProofs  13 днів тому

      Bryan Hayes did a detailed story about it and how it’s not so crystal clear what the story was.

    • @MathVisualProofs
      @MathVisualProofs  13 днів тому

      So it is likely rooted in truth but the details are hard to know for sure.

  • @ArnaudJohnsie
    @ArnaudJohnsie 18 днів тому

    Great analysis, thank you! Could you help me with something unrelated: I have a SafePal wallet with USDT, and I have the seed phrase. (alarm fetch churn bridge exercise tape speak race clerk couch crater letter). How should I go about transferring them to Binance?

  • @nezammohamadi2120
    @nezammohamadi2120 17 днів тому +1

    nurd...

  • @ChessGamer635
    @ChessGamer635 18 днів тому +2

    First comment/ Second view

  • @piwi2005
    @piwi2005 18 днів тому +1

    As usual, you are not proving anything. You take something that works, plot it and say "look, it works". As a consequence, you induce people who do not know maths into thinking they have a proof, when the only thing they have is the observation of something true, which had no way to be "not working" because, guess what, you were not trying to prove false things. So far, the only videos that could be claimed as "visual proofs" in this channel are maybe infinite sum ones, under the condition that all steps were simple enough to be self obvious, and not just the observation of something that could not be not working.

  • @purabimondal6270
    @purabimondal6270 10 днів тому

    This is specially for all of you:
    In the new year eve, i thought , as a math enthusiast, why don't I give my math friends a math problem and wish them new year through that?And then , working for about an hour , I made a crazy problem myself. I sent it to some of my friends and some solved it too and were really impressed. This is a finalized version for you. Try it out yourselves.
    Let f(x) = 45.e^(-x/4).[cos (2x)/{(4/65).(e^(-π/8) - e^(π/8)}]
    Now find the integral of this function over the interval [-π/2 , π/2] , square the answer and see what you get!