Solving 'Stanford' University Entrance Exam | Best Trick Ever!!! | a=?

Поділитися
Вставка
  • Опубліковано 28 січ 2025

КОМЕНТАРІ • 8

  • @jossamkamchanda9290
    @jossamkamchanda9290 12 днів тому

    Brilliant... beautiful...

  • @naveenarumugam8268
    @naveenarumugam8268 10 днів тому

    There is a simple way mam take 4 root on both sides it is completed

  • @stpat7614
    @stpat7614 11 днів тому +1

    (a - 4)^4 = 16
    (a - 4)^(2 * 2) = 4^2
    ([a - 4]^2)^2 = (2^2)^2
    Let x = (a - 4)^2, and y = 2^2
    ([a - 4]^2)^2 = (2^2)^2
    => x^2 = y^2
    => x^2 - y^2 = y^2 - y^2
    => x^2 - y^2 = 0
    => (x - y)(x + y) = 0
    => ([a - 4]^2 - [2^2])([a - 4]^2 + [2^2]) = 0
    Let x = a - 4, and y = 2
    ([a - 4]^2 - [2^2])([a - 4]^2 + [2^2]) = 0
    => (x^2 - y^2)(x^2 + y^2) = 0
    => (x - y)(x + y)(x - y * i)(x + y * i) = 0
    => ([a - 4] - 2)([a - 4] + 2)([a - 4] - 2 * i)([a - 4] + 2 * i) = 0
    => (a + [- 4 - 2])(a + [- 4 + 2])(a - 4 - 2 * i)(a - 4 + 2 * i) = 0
    => (a - 6)(a - 2)(a - 4 - 2 * i)(a - 4 + 2 * i) = 0
    => a - 6 = 0, or a - 2 = 0, or a - 4 - 2 * i = 0, or a - 4 + 2 * i = 0
    a1 = 6
    a2 = 2
    a3 = 4 + 2 * i
    a4 = 4 - 2 * i

  • @georgesunaryo5080
    @georgesunaryo5080 9 днів тому

    Keep it simple & stupid, just change the 16 into 2 square root 4.