Photogrammetry I - 14 - Homogeneous Coordinates (2015)

Поділитися
Вставка
  • Опубліковано 28 січ 2025

КОМЕНТАРІ • 23

  • @onurcanyucedag764
    @onurcanyucedag764 4 роки тому +1

    This was the single video that fills the all the gaps for Homogeneous Coords.

  • @aseelmsc2121
    @aseelmsc2121 7 років тому +5

    I study all your videos , the course material very helpful , thanks a lot

  • @brevin-tilmon
    @brevin-tilmon 5 років тому +2

    Thank you for putting these lectures online.

  • @SumitNair1
    @SumitNair1 2 роки тому

    54:56 there's an error in D2 when the variables are passed into the matrix in the lower right hand corner.

  • @larsrustanandersson3347
    @larsrustanandersson3347 8 років тому

    Fantastic pedagog! One of the best I've followed on UA-cam! Thank You!

  • @aliensoup2420
    @aliensoup2420 3 роки тому

    By your simple definition at 21:30, it appears that the homogeneous property is really just another description of an eigenvector/eigenvalue, such that under certain transformations, a vector remains unchanged, and its only distinguishing property is defined by the eigenvalue . Is this in fact what the homogeneous property is, or is this observation merely coincidental?

  • @thefauji
    @thefauji 8 років тому +1

    Thank you. A very detailed and easy explanation of a very tricky topic

  • @trevorjennings4823
    @trevorjennings4823 8 років тому +3

    Thanks so much for the video, really helped me out.The only part I found confusing was the representation of a "line" in homogenous coordinates as a 3-vector. I had to pause the video and think for awhile before figuring out this 3-vector is actually the normal vector of some surface. This surface intersects the z=1 plane forming the line in question.

    • @AdiCherryson
      @AdiCherryson 7 років тому

      Omg, how did you figured this out only by analyzing this vector? I don't buy it that everyone else came up with this solely from the video/lecture. There is no word of explanation! No proof that it is the case. Does author even know that? ;)
      Thanks for your comment. It saved me a headache.

  • @yogeshagrawal3635
    @yogeshagrawal3635 7 років тому

    a very nice explanation of the fundamental concepts on projective geometry.!

  • @sheenanasim
    @sheenanasim 5 років тому +1

    Even the dumbest person can get the concept right after watching this. Great lecture! Thanks.

  • @ahalyasubramanian2315
    @ahalyasubramanian2315 9 років тому +1

    Great and clear explanation..

  • @LukeSchoen
    @LukeSchoen 5 років тому

    This is the video i've was needing!

  • @abhishektyagi154
    @abhishektyagi154 6 років тому

    Thank you so much. Very clear explanation.

  • @sg22r
    @sg22r 7 років тому

    amazing! very clear explanation

  • @JUDALUCI
    @JUDALUCI 5 років тому

    Dear Sir, I am currently researching this field and came across your informative channel. Can you please share the link to the slides of this course? Appreciate.

  • @specimon
    @specimon 4 роки тому

    Great video! Thank you

  • @dhawals9176
    @dhawals9176 5 років тому

    At 28:36 can we assume square(|x|) is always positive. I mean can any of one of the u,v,w be imaginary?

  • @MarcDufresneosorusrex
    @MarcDufresneosorusrex 4 роки тому

    this is why i have to learn on video; i have to rewind to follow what he's saying;

  • @clifforddicarlo9178
    @clifforddicarlo9178 Рік тому

    It is impossible for me to see what you're writing on the black board. BlackBoard needs to be illuminated better.

  • @yechris9428
    @yechris9428 6 років тому

    Thank you, the videos help me a lot!

  • @plavix221
    @plavix221 9 років тому

    The number space of projective geometry is always connected to lines going through the big O. XD
    Just another way of describing points in space. lol