How to Test if a Vector Field is Conservative // Vector Calculus

Поділитися
Вставка
  • Опубліковано 30 січ 2025

КОМЕНТАРІ • 111

  • @thehighground583
    @thehighground583 3 роки тому +45

    My dude you are an absolute legend!!! You successfully explained this so much more succinctly and clearly than my textbook ever did. That color coding really helps too! Thank you!!!

  • @peterhindes56
    @peterhindes56 Рік тому +5

    Awesome, been looking for this all night!

  • @christinegestiada6443
    @christinegestiada6443 3 роки тому +19

    I was tasked to discuss on line integral and path independent. And I'm so thankful of your videos because I really understood it.

  • @Shreyas_Jaiswal
    @Shreyas_Jaiswal Рік тому +5

    Finally after scrolling through many videos, my need was fulfilled. I finally learnt how to check for conservative fields.❤

  • @caoviethainam9363
    @caoviethainam9363 3 роки тому +8

    Perfect math professor that any students could only wish of. Hats off.

  • @ogunsadebenjaminadeiyin2729
    @ogunsadebenjaminadeiyin2729 4 роки тому +11

    Prof, you're SO good at teaching

    • @DrTrefor
      @DrTrefor  4 роки тому +2

      I appreciate that!

  • @j.o.5957
    @j.o.5957 3 роки тому +4

    I know this is my second comment on this video, second time going through it, but it's just so beautiful! I remember when I first learned about vector functions and thoughts "Holy shit, there is so much potential here." Well, now I'm seeing some of that potential coming through and I'm loving it

  • @Alex-bc3tt
    @Alex-bc3tt 2 роки тому +11

    Another easier way to test if a vector field is conservative is by finding the curl of the vector field, if the curl is a zero vector(i.e then the vector field is conservative, The curl will automatically check for all the cases that you have listed.

    • @carultch
      @carultch 2 роки тому

      How do you check if a 4-dimensional vector field is conservative, if curl only works for up to 3-dimensional fields?

    • @integration8274
      @integration8274 Рік тому

      @@carultch use 4 dimensional curl

    • @felixkibet
      @felixkibet Рік тому

      Thanks a bunch

  • @christopherwalsh3101
    @christopherwalsh3101 4 роки тому +67

    You ask the victor field if it wants to raise taxes!🥁🔔😄😎

  • @Timmlyboy
    @Timmlyboy 4 роки тому +41

    if i wanted to know if a vector field was conservative i'd just ask them if they voted for trump or biden

    • @DrTrefor
      @DrTrefor  4 роки тому +8

      Haha, did I really release this vid right after an election, oops😂

    • @armandom2480
      @armandom2480 3 роки тому +1

      Bruh lol

    • @RuthvenMurgatroyd
      @RuthvenMurgatroyd 6 місяців тому +1

      Lol, somehow - to America's great shame - this joke is still relevant in 2024; and in point of fact, it's aged better than the candidates!

  • @raghuramabl6729
    @raghuramabl6729 3 роки тому +3

    oh ok now I got why the curl of a vector F is equal to the null vector represents path independent
    Thank you, Sir 🙏👌

  • @banashrisarkar8567
    @banashrisarkar8567 3 роки тому +2

    I can't concentrate on your lecture for your t shirt . All the time I had watched it and try to understand all the figures. 😂😂

    • @DrTrefor
      @DrTrefor  3 роки тому +2

      lol I love that t shirt so much:D

    • @banashrisarkar8567
      @banashrisarkar8567 3 роки тому

      @@DrTrefor It's amazing 🤩 and I also love this. I need this t shirt 🥺,but not possible I know .

  • @Tryha4d
    @Tryha4d Рік тому

    My high school teacher explained that but I couldn't get any grasp thanks for explaining this nicely :)

  • @Alex-bc3tt
    @Alex-bc3tt 2 роки тому +1

    Thank you so much for this great content... very concise and straight to the point... You've earned yourself a new subscriber 🙏🙏🙏

  • @IsaacNewton1687
    @IsaacNewton1687 3 роки тому +2

    I HAVE THOMAS AND ITS MY FAVOURITE BOOK . ITS SIMPLY AMAZING . I LOVE IT . FOR REAL ITS PERFECT

  • @hectorgalva7495
    @hectorgalva7495 4 роки тому +5

    Hi, doctor. What could happen in higher dimensions, like 4, 5, and so on. How could I know if a function is conservative when it is in a dimension higher than 3?

    • @DrTrefor
      @DrTrefor  4 роки тому +7

      The same basic idea. You need to compare all the possible ways you take the partial of the ith component with respect to the jth variable to the partial with j and i reversed. If all of those match up, it is conservative.

    • @hectorgalva7495
      @hectorgalva7495 4 роки тому +2

      @@DrTrefor Thanks so much by your answer, greetings from Dominican Republic. 😊😊

  • @greatape6096
    @greatape6096 9 місяців тому

    Great video Dr. Bazett. Thank you very much for doing this.

  • @dalibormaksimovic6399
    @dalibormaksimovic6399 2 роки тому +1

    Sir, can you please explain to me 2:24, I am a newbie in the multivariable calculus.

    • @dalibormaksimovic6399
      @dalibormaksimovic6399 2 роки тому

      Can you recommend me a course in order for me to see a proof where partial derivatives commute, I will appreciate.

  • @翰翰-u6w
    @翰翰-u6w 3 роки тому +2

    Thank you for making this video. It’s really helpful.

  • @RSS18
    @RSS18 3 роки тому +1

    Great , I was just looking for this topic

  • @atrociousprogramming
    @atrociousprogramming Місяць тому

    i like your videos for getting an overall understanding of the concept however i think it would be helpful if you went over an example in the same video.

  • @k2___2
    @k2___2 2 роки тому

    great addition to my lectures thank you

  • @j.o.5957
    @j.o.5957 3 роки тому +3

    Omg this so good, you're the real mvp

  • @matteovissani1071
    @matteovissani1071 4 роки тому +4

    Why is important that the domain is simply connected? I have never understood this thing.

    • @DrTrefor
      @DrTrefor  4 роки тому +6

      Imagine the curve is a figure 8, and you are driving around and pointing your normal out the window to the left. Sometimes you are pointing INSIDE the curve, sometimes OUTSIDE. That's a problem for measuring the flux via the degre to which it is only going outside. SImply connected blocks that problem.

  • @chinny872
    @chinny872 3 роки тому +4

    this is awesome. in our vector analysis class, we sought grad x gradf = 0, which makes sense analytically since the curl of a gradient is zero, but i don't fully understand this geometrically -- YET!

  • @the.lemon.linguist
    @the.lemon.linguist Місяць тому

    could you theoretically also test if it's conservative by taking the partial derivative of M w.r.t y, then doing it again w.r.t. z, and testing if it's equal to the expression you get if you do so with N (w.r.t. x and then w.r.t. z) and if you do so with P (w.r.t. x and then w.r.t. y)?

  • @xoppa09
    @xoppa09 3 роки тому +2

    P, Q, R are often used, instead of M,N ,P . I think M,N is only used for 2d vector fields. tomayto tomahto... great video!

    • @DrTrefor
      @DrTrefor  3 роки тому +1

      Depends on the text, no standardization here sadly

  • @aliemreaksoy1421
    @aliemreaksoy1421 3 роки тому +5

    Dr. Bazett, first of all, thank you for the great video. I would like to ask you a question about this test you are presenting. I believe this "if and only if" property is called the Poincaré-Lemma, where it is stated that it applies only when the domain of F star shaped is (Star Domain), which in general any higher dimension R is. However, we might not be working with a star domain, for example F might be defined on R^2\{0}. In that case, can we still use this test or is it invalid? Thank you in advance!

    • @tnyhwksk8
      @tnyhwksk8 3 роки тому

      OMG. This question is exactly what I was thinking when I studied this topic last night. Thank you for writing here. Are you also a mathematics student or just asking out of curiosity?

    • @ardaozcan98
      @ardaozcan98 3 роки тому

      @@tnyhwksk8 You know, I am kind of a mathematician myself.

    • @aliemreaksoy1421
      @aliemreaksoy1421 3 роки тому

      @@ardaozcan98 Kind of?

    • @ardaozcan98
      @ardaozcan98 3 роки тому +1

      @@aliemreaksoy1421 I use mathematics to understand, examine and shape nature according to my will.. as much as my budget permits.

    • @aliemreaksoy1421
      @aliemreaksoy1421 3 роки тому

      @@ardaozcan98 So you are an engineer

  • @stivicanka2703
    @stivicanka2703 11 місяців тому

    I absolutely love your work, but something that I believe is missing is the fact that using Clairaut's does not always correctly tell us whether a vector field is conservative or not as it does not account for singularities.

  • @mathwithmatt5032
    @mathwithmatt5032 4 роки тому +2

    How does this method differ from the curl method?

    • @DrTrefor
      @DrTrefor  4 роки тому +3

      No, actually we are going to introduce that in a video a little bit later in the playlist and show they are exactly the same

  • @jamwheeler
    @jamwheeler 4 роки тому +1

    what happened at 4:11?

    • @DrTrefor
      @DrTrefor  4 роки тому +1

      hahah oops editing error. If I ever uploaded an uncut version there would be like a hundred of those, I just normally cut them all out:D

  • @ahmettarkpcak2551
    @ahmettarkpcak2551 3 роки тому +2

    I really like your t-shirt. How can I find it?

  • @VaffleMan
    @VaffleMan 6 місяців тому

    Why does the CURL of a force determine if it's conservative of not?

  • @briansolonka5045
    @briansolonka5045 4 роки тому +1

    Wow! beautiful work sir

    • @DrTrefor
      @DrTrefor  4 роки тому +1

      Thank you so much!

  • @ductanle2806
    @ductanle2806 3 роки тому +1

    Which video in the calc 3 playlist did you prove the commuting mixed partial trick?

    • @DrTrefor
      @DrTrefor  3 роки тому +2

      It wasn’t done in a video, sorry, many things get left to my actually classes:/

  • @JPL454
    @JPL454 26 днів тому

    Can't I say that a vector field F is conservative iff its Jacobian matrix is symetric? (equal to its transpose)

  • @teddy05p
    @teddy05p 10 місяців тому

    How do you know if its iff when you have holes ?

  • @mathanimation7563
    @mathanimation7563 4 роки тому +1

    great video sir i became big fan of you

    • @DrTrefor
      @DrTrefor  4 роки тому +2

      Thank you so much, and thanks for becoming a member I really appreciate that! :)

  • @SufyanAkbar96
    @SufyanAkbar96 5 місяців тому

    i want a picture of drawings on his shirt ,, but couldn't find online, guess couldn't search for right keywords
    if anyone knows please share the link

  • @carlosmurillo7917
    @carlosmurillo7917 3 роки тому

    where did you get your shirt?

  • @AaronDetablan
    @AaronDetablan 2 роки тому +1

    thank you

  • @chamithdilshan3547
    @chamithdilshan3547 3 роки тому +1

    Thank you so much sir!

  • @dhruvrachakonda6873
    @dhruvrachakonda6873 2 роки тому

    Very helpful video, thank you.

  • @godfather7274
    @godfather7274 3 роки тому

    VERY VERY HELPFUL , THANK YOU

  • @apigeon9884
    @apigeon9884 3 роки тому

    Hello I would like to know where did you get that tshirt from :')

  • @chyldstudios
    @chyldstudios 4 роки тому +5

    Three vector fields walk into a bar ...

  • @tahir2443
    @tahir2443 3 роки тому +2

    Genius.

  • @zhengzhengchen3743
    @zhengzhengchen3743 3 місяці тому

    I think it is better to understand the criterion based on the fact that "grad X grad f = 0".

  • @praisejaravani8639
    @praisejaravani8639 Рік тому

    That is a super cool t-shirt👕😂

  • @sergiolucas38
    @sergiolucas38 3 роки тому +1

    Nice video, thanks :)

  • @yosansu
    @yosansu 3 роки тому

    Thanks for the amazing video professor. I find it funny that the T-shirt had the wrong graph for y=sin(x) :)

    • @DrTrefor
      @DrTrefor  3 роки тому +1

      ha I suppose it depends where the origin is:D

  • @gokudegrees
    @gokudegrees 3 роки тому +1

    awesome im on this exactly on a year

  • @Alannnn14
    @Alannnn14 4 роки тому +1

    Thank you very much.

    • @DrTrefor
      @DrTrefor  4 роки тому +1

      You are welcome!

  • @mnada72
    @mnada72 3 роки тому +1

    Now I get it. Electric field is a flux field and Magnetic field is a flow field. Can't wait to see the nature of potential function of both 🤯

  • @woodychelton5590
    @woodychelton5590 Рік тому

    INSAHLLAH I PASS CALC 3 FINAL BABY LETS GOOOOOOOOOOOOOOOOOOOOOOOOOOOO

  • @kasyapdharanikota8570
    @kasyapdharanikota8570 4 роки тому

    Simply amazing

    • @DrTrefor
      @DrTrefor  4 роки тому

      Thank you! Cheers!

  • @Barth010m3ws
    @Barth010m3ws 4 місяці тому

    if the curl of the function gives (...)i = (...) j = (...)k , then the forces are conservative.

  • @ileanadominguez6055
    @ileanadominguez6055 2 роки тому

    Thank you very much :)

  • @LawunnHtet-gz9hg
    @LawunnHtet-gz9hg 10 місяців тому

    where did you get the shirt, i need itttttttt

  • @Agent-Bittu
    @Agent-Bittu 4 місяці тому

    You are just great

  • @A_Quantum_Router
    @A_Quantum_Router 6 місяців тому

    If the last equation is eP/ex = eM/ez instead of eM/ez = eP/ex, then the whole equations look like a cyclic fashion and would be easy to be memorized.

  • @YoussefAli-mb2wu
    @YoussefAli-mb2wu 4 роки тому +1

    Amazing
    Thanks.

  • @continnum_radhe-radhe
    @continnum_radhe-radhe 2 роки тому +2

    🔥🔥🔥

  • @andrewclark9083
    @andrewclark9083 4 роки тому +1

    I love your t shirt

  • @eylulilgnpamuk5583
    @eylulilgnpamuk5583 Рік тому

    please link your tshirt

  • @ashutoshjaiswal5371
    @ashutoshjaiswal5371 2 роки тому

    the thing which is like most is his 't-shirt'

  • @mrmister3507
    @mrmister3507 2 роки тому

    That is such a cool shirt haha

  • @tszkinwong6170
    @tszkinwong6170 2 роки тому +1

    your shirt is so cute

  • @suleymanergin9499
    @suleymanergin9499 3 роки тому

    How do we test to see if a field is conservative ? The answer is to check, if the curl of that vector field gives us a zero vector !

    • @DrTrefor
      @DrTrefor  3 роки тому

      Indeed, that is exactly the same as what I've done here, and we'll inroduce the curl a little later in the playlist.

  • @submarine1839
    @submarine1839 3 роки тому +1

    Excellent! And I love your clothes!

  • @cadenorris4009
    @cadenorris4009 Рік тому

    This kind of math speak is exactly why I hate pure math. Nobody ever explains concepts in words anymore. It's all these weird symbols and logic statements that humans aren't meant to understand. At least engineering has intuitive diagrams and they actually tell you what youre looking for.
    Anyways, I'm so glad that this is going to be my last semester of dealing with this BS. Thanks for the video, it helped.

  • @zardox0163
    @zardox0163 3 роки тому +1

    Head hurty.

  • @albertopio6115
    @albertopio6115 14 годин тому

    You speak too fast

  • @smarthkapoor4383
    @smarthkapoor4383 Рік тому

    this was such a waste of time

  • @NatashaDortch-ow6fk
    @NatashaDortch-ow6fk 7 місяців тому

    005.6
    Yonkers. NY,ny.927.01.03.041/2.5
    vBurhans.928.88
    dnd../D
    pa../Direyt.or/R
    Presi'dent' a ii.q w.sa
    Nd./D
    Stigma.'a

  • @iamscoder
    @iamscoder Місяць тому

    Thank you