Turn Python BLAZING FAST with these 6 secrets

Поділитися
Вставка
  • Опубліковано 2 січ 2025

КОМЕНТАРІ • 72

  • @RameshBaburbabu
    @RameshBaburbabu Рік тому +12

    🎯 Key Takeaways for quick navigation:
    00:00 🚀 Leveraging Built-in Functions for Speed
    - Using built-in functions from the standard library boosts Python's speed.
    - Comparison of a custom sorting algorithm against the built-in sorted function.
    - Built-in functions are often faster due to being written in C.
    01:10 🔄 Laziness and Generators in Python
    - Embracing laziness as a virtue in coding for efficiency.
    - Utilizing the yield keyword to create generator functions.
    - Generators help with large data sets, avoiding expensive memory allocation.
    02:32 ⚙️ Enhancing Performance with Concurrency
    - Introducing concurrency using the multi-processing library.
    - Exploring the concept of embarrassingly parallel problems.
    - Demonstrating the efficiency gain through concurrent image processing.
    03:14 🛠️ Code Compilation with Cython for Optimization
    - Using Cython to compile Python-like code to C for performance improvement.
    - Optimizing specific parts of the codebase, not a full replacement for Python.
    - Significant performance improvement demonstrated with a factorial calculation.
    03:42 📚 Harnessing Compiled Libraries and Frameworks
    - Leveraging compiled libraries and frameworks like NumPy, Pandas, and Pillow.
    - Exploring performance benefits by tapping into C implementation.
    - Enhancing code readability while maintaining performance through these frameworks.
    04:10 🚀 Boosting Speed with PyPy Interpreter
    - Introducing PyPy as an alternative Python interpreter for improved speed.
    - Just-in-time compilation method for forward-looking code compilation.
    - Consider benchmarking code with both PyPy and CPython for optimal performance.

  • @xhenryx14
    @xhenryx14 Рік тому +65

    Numba is really fast! The problem is it doesn't support objects, but is really good for small numerical functions

    • @dreamsofcode
      @dreamsofcode  Рік тому +7

      I should look into Numba! That's a great tip, thank you!

  • @jeffreyhymas6803
    @jeffreyhymas6803 Рік тому +37

    This might be a bit nitpicky, but concurrency != parallelism. If you're using the multiprocessing library you're executing your code in a truly parallel fashion since it spawns new processes each with their own interpreter running, but you don't have to do that to run code concurrently. Asyncio and the threading library will both allow you to make your code concurrent, without needing new processes. If your tasks are largely io bound, asyncio or threads are usually a better choice, while multiprocessing is better for CPU bound processes (generalizing of course).
    Multiprocessing isn't always faster either. Depending on the number of threads and complexity of the problem, it might not be worth incurring the additional overhead to spawn new processes.
    And on top of all that you're adding complexity to your code. Concurrency/parallelism aren't easy. So all that is to say, it's a nuanced topic and might not be the best example of an easy or effective way to improve the performance of your code.

    • @electrolyteorb
      @electrolyteorb 8 місяців тому

      "Concurrency is all about managing many tasks at once
      Parallelism is about doing many tasks at once"

  • @vincentbenet
    @vincentbenet Рік тому +25

    Once, one of my programm in python tooked 35min to process, a collegue ported this to a python rust-based librairy and the script was running in less than a second.

  • @AxidoDE
    @AxidoDE 7 місяців тому +94

    Remember, folks: The secret to making Python run fast is to use as little Python as possible.

    • @paperclips1306
      @paperclips1306 6 місяців тому +1

      I use it for API. The speed is not at all an issue for me.

    • @Cybergazer-n9o
      @Cybergazer-n9o 3 місяці тому

      If nim had more community support it'd be a drop in replacement for Python

    • @alexisvillegas1953
      @alexisvillegas1953 2 місяці тому +1

      @@Cybergazer-n9o what is nim?

    • @OficinadoArdito
      @OficinadoArdito 2 місяці тому

      EXACTLY! I use it for the GUI with Qt because it is very simple and speed is not needed, but the core stuff I always send to compiled libraries.

  • @TheGabrielMoon
    @TheGabrielMoon 6 місяців тому +2

    kids the language itself isn't slow. The thing is the optmization it's done by a interpreter or compiler. so the official python interpreter it's too slow, you can find some alternatives like numpy, cpython, numba, jython and so on.

  • @scotth8828
    @scotth8828 Рік тому +5

    Great ideas! I got some code that runs multiple dd commands and is dog-faced slow. I'll try some of these like pypy and cython to see if it increases the speed
    One thing that I do: instead of adding characters to a string I use a list and append items to that list and use " ".join(list_in) to create the string at the end.
    Ex. if you're using st1 = st1 + new_char and you're creating an 80 character line you'll have 3200 immutable characters because of all the strings.
    by using lst_st1.append(new_char) with a " ".join(lst_st1) at the end you have 160 immutable characters.

    • @Kralnor
      @Kralnor 7 місяців тому

      And even better if you can generate the list by comprehension instead of appending.

    • @jamesgray6804
      @jamesgray6804 5 місяців тому

      See also io.StringIO. I haven't done a direct comparison, but it always seems quick.

  • @storyxx
    @storyxx Рік тому +42

    You have to be careful with multiprocessing though. Since Python is interpreted and e.g. CPython only offers a single Interpreter instance, multiprocessed code can actually be slower, because only a single Interpreter is performing the operations and context switches in between take time (see Global Interpreter Lock). It works well for IO bound operations though, like you showed in the video :)

    • @dreamsofcode
      @dreamsofcode  Рік тому +37

      I believe you're correct for Python threads, but multiprocessing actually forks new processes which have their own GIL (global interpretor lock). It can be slower however due to the overhead of creating more OS processes, and having to serialize and deserializd the data to those processes, so definitely worthwhile to check what is more performant!

  •  10 місяців тому +1

    Nice video. Nice Vim editor too. Thanks!

  • @SharunKumar
    @SharunKumar Рік тому +8

    0:30 - seems like you're creating new arrays for each partition (quick sort) but that defeats the purpose of quick sort which is supposed to be in place sorting algorithm 😢

    • @31redorange08
      @31redorange08 10 місяців тому +2

      So he actually is bad at writing code. Welp.

  • @onetruetroy
    @onetruetroy 3 дні тому

    Excellent video. I like a slow running environment during the development process because I want to learn how to make faster algorithms and code. Python is perfect for me just like BASIC and JavaScript. If my interpreted code can run efficiently then that’s a good indicator it will run well when compiled.

  • @user-pw5do6tu7i
    @user-pw5do6tu7i 11 місяців тому

    if you have code generating code in a build step, using pickling is sometimes much faster when you use it at runtime. I think it skips having to serialize it all again.

  • @demolazer
    @demolazer 6 місяців тому

    1:06 The amount of times I've decided to spend a few minutes writing a script to automate something, only to enter a fever dream of ideas and end up wasting an hour on optimizing and refactoring it for no productive reason :D

  • @AlexKidd4Fun
    @AlexKidd4Fun 2 місяці тому

    Python 3.13 now has an experimental JIT compiler. Maybe it will be fully supported for 3.14?

    • @keuwey
      @keuwey Місяць тому

      I think everyone hopes so

  • @RicardoSuarezdelValle
    @RicardoSuarezdelValle 8 місяців тому

    Not that I've looked too deeply into it, but the generators example seems wrong, it seems like the time save comes from not using .split in the generator version

  • @ewerybody
    @ewerybody Рік тому +4

    Make use of set and dict which use internal hashing to improve lookups insanely!
    (I used to amount stuff in lists and looped over them ... that was SO bad!)

    • @dreamsofcode
      @dreamsofcode  Рік тому +2

      I actually have a video about this coming out!

    • @pingmetal
      @pingmetal 8 місяців тому

      @@dreamsofcode Still planning to release it someday?

    • @dreamsofcode
      @dreamsofcode  8 місяців тому +1

      @@pingmetal Haha I actually still have this video in my backlog. It's evolved somewhat since the original conception however.

  • @flynnfittz
    @flynnfittz 7 годин тому

    0:30 Don’t want to burst your bubble, buddy, but that’s GPT 3 levels of QS…

  • @Luix
    @Luix Рік тому

    How does QT generate the binaries?

  • @dafoex
    @dafoex 11 місяців тому

    Possibly a dumb question, but is it not possible to just compile Python like you would any other language? Pre-interpret it, if you will? Speed isn't my biggest concern, as long as the machine does it faster than I can (I'm not a big, professional developer), so I've never really thought about it until now.

    • @CramBL
      @CramBL 10 місяців тому +2

      "like you would any other language". The approach varies wildly between languages. The stages from the language we implement it in, to the machine code that the CPU (or GPU) executes is rarely the same between languages, even seemingly similar languages like C and C++. There's stage after stage after stage (especially for C++), until it reaches a point that it can be translated to some flavor of assembly and then to machine code.
      The "easiest" way to compile python would be to transpile it to a language that you can compile. And then Python is just a frontend to that language. The second easiest would probably be to implement a way to translate Python into some flavor of LLVM intermediate representation (IR) and then compile it to machine code from there. That is an approach many languages take, such as Rust, Zig and dozens of esoteric languages. Now you need to define a Python standard that describes how you go from arbitrary valid Python to LLVM IR. It would probably require Python4, otherwise I assume it would already exist.

    • @vncstudio
      @vncstudio 3 місяці тому

      You can use Cython 3.1.

  • @zuowang5185
    @zuowang5185 6 місяців тому

    should I replace asyncio with multiprocessing?

    • @vncstudio
      @vncstudio 3 місяці тому

      You can also use concurrent.futures which is very easy to use.

  • @vidal9747
    @vidal9747 5 місяців тому

    I find it much easier to use joblib in embarassingly parallel problems than multiprocessing

  • @profesionalfailer
    @profesionalfailer Рік тому

    Which is the fastest among these?:
    - Yield generators
    - Inline generators
    - List comprehensions

    • @dreamsofcode
      @dreamsofcode  Рік тому +3

      Great question!
      - List comprehensions arent lazy evaluated to my knowledge so they'll likely not be as performant.
      - I'm unsure about inline generators so would need to look those up to give a concrete answer.

    • @almuaz
      @almuaz Рік тому +1

      List comprehensions is the fastest in general. but it may vary based on your code and other workflow and objects.

  • @31redorange08
    @31redorange08 10 місяців тому +3

    As expected: Turn Python fast by using other languages.

    • @OmarHashimOAD
      @OmarHashimOAD 8 місяців тому

      which is one of the core concepts of the language

  • @vanodon2257
    @vanodon2257 Місяць тому

    If I am scripting in python for something slow I will just add python bindings to my old c or rust code.

  • @deadeye1982a
    @deadeye1982a 10 місяців тому

    Using mmap to create a hash from a file. This is not much faster than the approach with a buffer.

  • @kovlabs
    @kovlabs Рік тому

    How about using maturin and Rust for those intense operations

    • @dreamsofcode
      @dreamsofcode  Рік тому +3

      Don't tempt me. I've got a video on making python faster with rust 😅

  • @blankRiot96
    @blankRiot96 Рік тому

    I like the representation

  • @nomadshiba
    @nomadshiba 6 місяців тому

    idc about the speed, i just don't like the syntax and the way language works

  • @musluy
    @musluy Рік тому

    Still waiting for PyPy

  • @igorlukyanov7434
    @igorlukyanov7434 Рік тому +9

    The best method to improve speed of Python code is to use C++.

    • @dreamsofcode
      @dreamsofcode  Рік тому

      Hahah or C. There's also some other languages one can use 😉

    • @learning_rust
      @learning_rust 8 місяців тому

      @@dreamsofcode eg Rust! 😉

    • @vncstudio
      @vncstudio 3 місяці тому

      nimpy and nimporter for using Nim with Python is also good.

  • @secretterminal2179
    @secretterminal2179 Рік тому +2

    Secret number one: use c++

  • @onogrirwin
    @onogrirwin 7 місяців тому

    0:45

  • @ArachnidAbby
    @ArachnidAbby Рік тому

    Pypy made my code slower. Although my code was running in only a few hundreths of a second so.... maybe that was my fault for expecting it to be faster...

    • @dreamsofcode
      @dreamsofcode  Рік тому +4

      Haha. I should do a video on when to use pypy. It's mainly best for when you have code that is called multiple times. Such as in a loop. Otherwise the JIT compilation is wasteful.

    • @ArachnidAbby
      @ArachnidAbby Рік тому

      @@dreamsofcode it looped thru 1.5k iterations

    • @dreamsofcode
      @dreamsofcode  Рік тому

      Interesting, what was the code doing in those iterations?

    • @ArachnidAbby
      @ArachnidAbby Рік тому +2

      @@dreamsofcode it was a parser. It would take a look at a list of tokens, compare it to some expected tokens, if the checks passed it would consume the tokens and replace them with a new one. That process would repeat until it got to the end.
      The input file was 200 lines, but i couldnt give you a number of tokens. It was probably a few hundred

    • @dreamsofcode
      @dreamsofcode  Рік тому +3

      Thank you for sharing. I've got a video planned with Pypy in the future so I'll add parsing + lexing as a benchmarking case!

  • @robert_nissan
    @robert_nissan 8 місяців тому

    poderoso

  • @SwinburneBuck
    @SwinburneBuck 3 місяці тому

    132 Abshire Loop

  • @official_mosfet
    @official_mosfet 8 місяців тому +2

    Python is just slow if you don't know how to use it.

    • @OmarHashimOAD
      @OmarHashimOAD 8 місяців тому

      pure python is slow but you never meant to use "pure python" and that why the Standard library exist.

  • @Bl0xxy
    @Bl0xxy 2 місяці тому

    The speed isn't the issue. Python is so hard to code in, the syntax is so ugly

  • @gadelavega
    @gadelavega 2 місяці тому

    Mixed concurrency with parallelism... sorry, I'm out of here