so, you want a HARD math question with exponents?

Поділитися
Вставка
  • Опубліковано 7 січ 2025

КОМЕНТАРІ • 13

  • @akeebplazy1124
    @akeebplazy1124 2 місяці тому +2

    Here is a shorter solution which give the same answer:
    x² = 4^x
    x²=2^(2x)
    taking ln of both sides and using log priperties we get
    2lnx=2xln2
    lnx=xln2
    lnx/x = ln2
    Rewrite x as e^(lnx)
    lnx/[e^(lnx)] = ln2
    Using exponent properties transport denominator into numerator we get
    (lnx)[e^(-lnx)] = ln2
    (-lnx) [e^(-lnx) ] = -ln2
    Taking W lambert of bothe sides we get
    -lnx=W(-ln2)
    lnx=-W(-ln2)
    finally rasing e to the power of both sides we get
    x = e^[-W(-ln2)]
    Which is the same as the answer in the video because ln4 / 2 can simplified into ln 2 as follows
    ln 4/2
    ln(2²) /2
    2ln2 / 2
    ln2
    This method is simpler, i dont know why he didnt do it this way in the video

  • @digbycrankshaft7572
    @digbycrankshaft7572 2 місяці тому +2

    The -(ln4)/2 can be simplified to -ln2 if it is not to be evaluated.

  • @mariodistefano2973
    @mariodistefano2973 2 місяці тому +3

    So you finally found the solution using the function's graphs? Where you explain how to solve the Lambert's function numerically?

    • @marilynman
      @marilynman 2 місяці тому

      Numerical analysis using Newton's Method or any other, preferably with fast calculations rather than fast convergence if you are doing it by hand.

  • @Seedwreck
    @Seedwreck 2 місяці тому

    This is a communicative expression: 2^4 = 4^2

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 2 місяці тому

    {4x+4x ➖ }=8x^2 2^3x^2 1^1^1x^2:1x^2 (x ➖ 2x+1).

  • @musicsubicandcebu1774
    @musicsubicandcebu1774 2 місяці тому

    Raise bs to power 1/2
    Divide bs by 2ˣ
    x2⁻ˣ = 1 . . . use lambert

  • @pkgupts1153
    @pkgupts1153 2 місяці тому

    Can you use better pen

  • @MgtowRubicon
    @MgtowRubicon 2 місяці тому +3

    Why not simplify ln(4)/2 to ln(2)?

    • @darkslayer5444
      @darkslayer5444 2 місяці тому

      Yes je me suis fait la meme réflection ca m'a énormément perturbé du début à la fin

  • @payoo_2674
    @payoo_2674 2 місяці тому +2

    You are wrong, the expression e^(-W(-ln(4)/2)) cannot have a negative value.
    But your answer x ≈ -0.641 is correct.
    How did this happen?
    Correct solution:
    x^2 = 4^x
    ln(x^2) = ln(4^x)
    2*ln|x| = x*ln(4) ===> two cases
    1st case: x > 0
    2*ln(x) = x*ln(4)
    ln(x)*x^(-1) = ln(4)/2 # ln(4)/2 = ln(2^2)/2 = 2*ln(2)/2 = ln(2)
    ln(x)*e^ln(x^(-1)) = ln(4)/2
    ln(x)*e^(-ln(x)) = ln(4)/2
    -ln(x)*e^(-ln(x)) = -ln(4)/2
    W(-ln(x)*e^(-ln(x))) = W(-ln(4)/2)
    -ln(x) = W(-ln(4)/2)
    ln(x) = -W(-ln(4)/2)
    x = e^(-W(-ln(4)/2)) ===> -ln(4)/2 < -1/e ===> no real solutions
    2nd case: x < 0
    2*ln(-x) = x*ln(4)
    ln(-x)*x^(-1) = ln(4)/2
    -ln(-x)*x^(-1) = -ln(4)/2
    ln(-x)*(-x)^(-1) = -ln(4)/2
    ln(-x)*e^ln((-x)^(-1)) = -ln(4)/2
    ln(-x)*e^(-ln(-x)) = -ln(4)/2
    -ln(-x)*e^(-ln(-x)) = ln(4)/2
    W(-ln(-x)*e^(-ln(-x))) = W(ln(4)/2)
    -ln(-x) = W(ln(4)/2)
    ln(-x) = -W(ln(4)/2)
    -x = e^(-W(ln(4)/2)
    x = -e^(-W(ln(4)/2)) ===> ln(4)/2 > 0 ===> 1 real solution
    x = -e^(-W₀(ln(4)/2)) = -0.641185744504985984486200482114823666562820957191101755139698797...

    • @JoshuaMay-e2n
      @JoshuaMay-e2n 2 місяці тому +1

      Yeah, he was going on the right path, but he skipped a step. x positive and real is a contradiction; you can see this from the graph, and it shows up in the math because the Lambert W function only gives complex values for argument < -e^-1. He implicitly went back and took the negative root of the absolute value, that gives a positive argument to the W function, and the result he has pops out.

    • @matkissmag9010
      @matkissmag9010 22 дні тому

      Totally agree, rather misleading video.
      My solution:
      x^2 = 4^x = ( 2^2 )^x = ( 2^x )^2
      Take the square root of both sides:
      => |x| = 2^x=e^( log 2^x ) = e^( x log 2 )
      1) x 0 - only W_0 branch
      => -x log 2 = W_0(log 2)
      x = -1/log 2 *W_0(log 2) ~ -.64119
      2) x>0: x = e^( x log 2 ) | log 2
      ...
      x log 2 e^(-x log 2 ) = -log 2 < -1/e => no real solution
      Python:
      from sympy import *
      from sympy.abc import x
      xx=solve( x**2-4**x)
      N( xx[1] )
      or simply
      N( -1/log(2)*LambertW( log(2),0 ) )