A beautiful result in calculus: Solution using complex analysis ( Integral cos(x)/(x^2+1) )

Поділитися
Вставка
  • Опубліковано 11 січ 2025

КОМЕНТАРІ • 124

  • @kilian8250
    @kilian8250 4 роки тому +84

    I remember watching this for the first time and not understanding anything. Now I’m finally studying complex analysis and I understand everything :)

  • @alephnone
    @alephnone 6 років тому +49

    I love how the humor and commentary is integrated (no pun intended) as you walk us through the solution. Well done!

  • @damiandassen7763
    @damiandassen7763 6 років тому +173

    Could you make a video of integrating x dx in the most hardest and inefficient way possible?

    • @dealwiththebob3877
      @dealwiththebob3877 6 років тому +37

      Let u = ln((3^x^4^x^i)/e^e^e^x)
      This could be a ‘fun’ substitution to make ...

    • @DragonKidPlaysMC
      @DragonKidPlaysMC 5 років тому +3

      Please do this!

    • @mk-nw4si
      @mk-nw4si 5 років тому +8

      doing this type of solutions is bad, even if trolling.. your brain will actually start thinking in that way. which is bad. just look for the best algorithm to apply to your problems instead. i bet its more fun :D

    • @David-km2ie
      @David-km2ie 4 роки тому +17

      @@mk-nw4si Who cares if its bad for you. Its fun!

    • @mk-nw4si
      @mk-nw4si 4 роки тому +3

      @@David-km2ie yeah well.. but if someone does it often even if ironically it will just turn into a habit

  • @MooshPeriwinkle
    @MooshPeriwinkle 6 років тому +87

    real boi + curvy boi = real curvy boi ;)

  • @TheMauror22
    @TheMauror22 6 років тому +23

    A similar one was on my complex analysis final exam, it asked to find the integral from -inf to inf of x*sin(x)/x^2+1, surprisingly the result is the same, pi/e. Amazing!!! But to show that Gamma tends to zero as R tends to inf I just used Jordan's Lemma hahahaha

  • @arranbreckenridge7055
    @arranbreckenridge7055 6 років тому +23

    I am literally in love with this man tbhhhhhhhhh

  • @ГЕОРГИЕДРЕВ-ю8р
    @ГЕОРГИЕДРЕВ-ю8р 4 роки тому +14

    "And now we need to take a look for the poles...."
    - Someone's FLAMMABLE grandpa,
    September 1st, 1939.

  • @jameswilson8270
    @jameswilson8270 6 років тому +8

    Very nice video. I like that you get to the point quickly in your videos. By the way, the integral where you write the limits as R to -R is a poor notation in my opinion because the integral depends on the path. In particular, if you take a (continuous) path from R to -R that crosses the imaginary axis somewhere between i and -i, then the value of the integral is -pi/e instead of 0 (for those who don't know).

    • @hanztimbreza6217
      @hanztimbreza6217 6 років тому +1

      You're right, the notation was a bit confusing. I was confused for a while

  • @dominikstepien2000
    @dominikstepien2000 6 років тому +8

    Do more complex analysis videos, please! They are fun to watch and there is not that much of them on youtube.

  • @remlatzargonix1329
    @remlatzargonix1329 6 років тому +2

    I think your videos are great!....You have enormous enthusiasm and a great sense of humour....keep up the great work.

  • @housamkak646
    @housamkak646 6 років тому +25

    Hey , i don't know how to integrate on a complex plane and stuff uve done and contour stuff,so please can u make a video explaining these things.

    • @00tact
      @00tact 6 років тому +7

      Housam Kak. There is a nice book in The Schaum outline series ‘Complex Variables’. You’ll know it in 1 month.

    • @housamkak646
      @housamkak646 3 роки тому

      now I do, this is really old!! and GOLD!

  • @samialsharari4771
    @samialsharari4771 2 роки тому +1

    Hi, at 8:10 where did the ( e^i*phi ) disappear? before the integration variable d phih, there was ( e^i*phi ) , where did it go?

    • @M.Hilmi21
      @M.Hilmi21 6 місяців тому

      But the absolut value of this is also just one

  • @RaymondRossell
    @RaymondRossell 6 років тому +11

    You're freaking hilarious!! (And brilliant too)

  • @ruskolnikov7211
    @ruskolnikov7211 6 років тому

    That first contour integral sign you drew. Beautiful.

  • @prateeksingh9001
    @prateeksingh9001 5 років тому +6

    You explained it excellently. Even a dumb like me got everything except, why did we replace cosx by e^ix🤔🤔

  • @aniketeuler6443
    @aniketeuler6443 Рік тому

    He made complex analysis so simple that my mind is now being complex at everything

  • @debrajbanerjee9276
    @debrajbanerjee9276 6 років тому +10

    Now solve this integral
    cos(nx)/(n+x^n) from -inf to inf

  • @Walczyk
    @Walczyk 4 роки тому

    i did partial fractions just for fun at timestamp 13:37 R/(R^2-1) = R/2(1/(R-1) - 1/(R+1)) = 1/2*(1/(1-1/R)-1/(1+1/R)) ~~ 1/2*(1/1 - 1/1) = 0

  • @ibyzrulez
    @ibyzrulez 6 років тому +2

    Great video thanks Flammable Maths!

  • @AtotheKres
    @AtotheKres 5 років тому

    I am so proud of myself - I spotted a mistake at 14:01. You state the value of the whole integral is independent of the limit for R. This is not a 100% true. The residue needs to be contained in the contour. Hence R must be bigger than |i|=1. So the integral can turn out to be zero for R

    • @UrasSomer
      @UrasSomer 5 років тому

      I don't think it matters since we let R approach infinity anyways

  • @user-pn9zm8qg7k
    @user-pn9zm8qg7k 6 років тому +2

    I see, so the residue theorem is the easy part, the hard part is make the curve path vanish when R approaches at infinity
    nice approach btw

  • @debrajbanerjee9276
    @debrajbanerjee9276 6 років тому +8

    Another crazy integral:
    What is the integral of sqroot(sinx) from 0 to pi?
    I found it 2√(2/π)(gamma(3/4))^2 in wolfram alpha which seems very interesting.can you provide me the magical steps?

    • @juanignaciodiaz28
      @juanignaciodiaz28 5 років тому

      Check papa's latest video on the beta function, that should give you an idea on how to approach the problem

  • @lionelinx7
    @lionelinx7 6 років тому +1

    I love ur complex analysis videos the best

  • @amineelfardi4311
    @amineelfardi4311 6 років тому +4

    I'm not familiar with complex analysis but I still enjoy this =)

  • @lucascruz3977
    @lucascruz3977 4 роки тому

    Yes, thanks to your videos, I (a freshman) got to solve this 😎

  • @danielescotece7144
    @danielescotece7144 6 років тому

    Subscribed!
    Actually I subscribed a long time ago!
    Well deserved my boi!

  • @dealwiththebob3877
    @dealwiththebob3877 6 років тому +1

    I have no idea what’s happening but I like it.
    (About to become an undergraduate student studying Maths so I’m in year 13)

  • @c1wang388
    @c1wang388 5 років тому +2

    why do you use exactly this new complex function , couldn't you use an other function at 0:46 ?

    • @Paul-ob2hy
      @Paul-ob2hy 3 роки тому

      because Re(f(z)) = the original integrand

  • @tonykarp5981
    @tonykarp5981 6 років тому +36

    But why is it pi/e, I mean, math says so, but why....

    • @YitzharVered
      @YitzharVered 5 років тому +29

      It's just 1 tho

    • @zuccx99
      @zuccx99 5 років тому +6

      Because math.

    • @arnavanand8037
      @arnavanand8037 5 років тому +8

      @@YitzharVered _shut up engineer_

    • @Josh-wb7ii
      @Josh-wb7ii 4 роки тому +3

      You could find infinitely many integral representations of whatever wacky combination of the transcendentals you wanted, it’s nothing significant

    • @medchs
      @medchs 4 роки тому +3

      @@Josh-wb7ii but this one is pretty _neat_ :
      one fraction, one trig on top, one quatdratic on the bottom, integrating over the entire set of real numbers..

  • @michelkhoury1470
    @michelkhoury1470 6 років тому

    Nice and correct solution... I solved it by the same way... I love very much complex analysis

  • @soliscrown1272
    @soliscrown1272 6 років тому +2

    I've thoroughly enjoyed this three part series. What's on the horizon for Flammable Maths?

  • @hoodedR
    @hoodedR 6 років тому +1

    Rewatching papa's complex analysis vids...

  • @noname_whatsoever
    @noname_whatsoever 6 років тому

    Great channel! It didn't take me a full minute of your content to press that subscribe button. :)

  • @xerxes4849
    @xerxes4849 3 роки тому

    Thank you sooo much. This was beautiful.

  • @meiwinspoi5080
    @meiwinspoi5080 4 роки тому +1

    if i use cauchy’s principal value for integral -infinity to +infinity cos x/x = 0 i am getting a weird answer of pi/2(e^(-1) - e), which actually is negative. What have i done wrong? all answers appreciated.

    • @davidblauyoutube
      @davidblauyoutube 2 роки тому

      It seems that integrating cos(x) is fine when x is real, but when extending the domain to complex numbers you need to use Re( e^iz ) instead.

  • @hzyildiz
    @hzyildiz 6 років тому +2

    I love your videos, and the funny thing is that I don't even understand them.

    • @mmtf
      @mmtf 6 років тому

      You unconsciously accumulate all the knowledge of Papa Flammy so you also learn everything :3

  • @integral-magic6061
    @integral-magic6061 4 роки тому +1

    Please antiderivative of f(x)=lncosx

  • @houssine.kacemfel1504
    @houssine.kacemfel1504 Рік тому

    hi! please what is the name for this integral ? I have this exercice : ∫ cos(t) / (t^2 + a^2) dt

  • @gideonmaxmerling204
    @gideonmaxmerling204 4 роки тому

    Can you do a video on complex analysis.
    the only thing I know about complex analysis is
    that the integral of g(z)dz over the curve c
    where c is defined by the bound [a,b] and the function f
    is the integral from a to b of g(f(x))*f'(x)dx

  • @doge_the_cat
    @doge_the_cat Місяць тому

    We can do this thru feynman also

  • @susobhanghosh6161
    @susobhanghosh6161 3 роки тому

    could you do this sum by cauchy residual method pls... putting cosx=(z+1/z)/2

  • @vector3042
    @vector3042 2 роки тому

    This was the first method I saw used to solve this problem, and I thought it was the coolest thing I had ever seen at the time. I still love this proof to this day. It's so fun to teach, and is great at the end of a complex analysis course as a perfect demonstration of the important principles.

  • @jekoddragon6227
    @jekoddragon6227 6 років тому +2

    li_ as r-> inf

  • @suneetiyer81
    @suneetiyer81 6 років тому

    Hey I've a few things to say.
    1)Pls do more videos on complex analysis! I really liked it and I'm trying to learn it from your videos.
    2)This may be a stupid question but pls answer me (I'm new to contour integration)
    In this question, if u initially take f(z)=(e^(-iz))/(z^2 +1);
    most of the stuff remains the same, except that the residue at i now becomes e/2i. So the contour integral now equals πe. So, finally wouldn't the answer become πe? Where's the mistake here?

  • @dealwiththebob3877
    @dealwiththebob3877 6 років тому +1

    Integral of 2xln((3x^2+4x-2)/(√(4x-1)) with respect to x.
    Have fun with this L O N G boi

  • @BlueHood345
    @BlueHood345 5 років тому +4

    I honestly went to this vid just to see how Chinese calculus is.

  • @oferzilberman5049
    @oferzilberman5049 4 роки тому +4

    The german accent+The great content+Calculus+great explanation=
    *_THIS VIDEO_*

    • @PapaFlammy69
      @PapaFlammy69  4 роки тому

      :)

    • @jorgegabrielgonzalez5610
      @jorgegabrielgonzalez5610 3 роки тому +1

      @@PapaFlammy69 Estimados @Flammable, por acaso tendrían videos explicativos de Integrales de funciones racionales entre limites infinitos.. multiplicados por seno y coseno por ejemplo ∫ [cosx /(x² + 1)²] dx de (-∞) a ∞

  • @jaimeaceros6098
    @jaimeaceros6098 Рік тому

    can you please re-do this with cos^-1(x)?

  • @not.harshit
    @not.harshit 5 років тому

    What if we use e^(-iz) and use the same parametrization of Re^iφ. We get the residue as πe and not π/e or am I doing something wrong

    • @not.harshit
      @not.harshit 4 роки тому +1

      @@vallinathan623 Euler's number is e≈2.71. I posted this a while back when I was still an amateur to complex analysis. Your response is appreciated tho.
      As for the answer, it turns out that you cannot use the lower plane for calculating the integral since the inteɡral blows up to infinity as z→∞.

  • @mayankbhama
    @mayankbhama 6 років тому +1

    bro please do me a favour
    solve int. tan^2(x)/(1+x^2+2x)

  • @ruceblee969
    @ruceblee969 4 роки тому

    How about e/pi?

  • @geniusgamer7689
    @geniusgamer7689 6 років тому +1

    Best video 👌👌👌

  • @AndDiracisHisProphet
    @AndDiracisHisProphet 6 років тому +4

    who is the guy in the thumbnail?

    • @AndDiracisHisProphet
      @AndDiracisHisProphet 6 років тому

      Thanks. Now i recognise him :D I don't know why, but at first I thought it was Landau....but it couldn't be.

    • @csanadtemesvari9251
      @csanadtemesvari9251 6 років тому

      is it him, because Pál starts with the letter pi and Erdős with e?

    • @shambosaha9727
      @shambosaha9727 4 роки тому

      @@csanadtemesvari9251 Probably not, but fantastic observation! !!!

  • @macmos1
    @macmos1 5 років тому

    Why do you use the upper half of the complex plane? It is not clear how or why you choose the upper half of the complex plane. Please explain... Thank you..

    • @macmos1
      @macmos1 5 років тому

      Mhmm so I could have used the bottom half as well? Since there is a pole there as well and residue theorem can be applied...?

    • @macmos1
      @macmos1 5 років тому

      Flammable Maths cool.. I really love your videos :) thanks!

  • @JuanLopez-rl7ry
    @JuanLopez-rl7ry 5 років тому

    I never understood why you can't use do contour integration directly without using converting cosine into a complex form

  • @FernandoVinny
    @FernandoVinny 6 років тому

    Why equal to Erdos?

  • @apostoloskountouris5144
    @apostoloskountouris5144 4 роки тому

    I very much like your videos. In this one are you trying to make a point? In that case please share...

  • @cgo435
    @cgo435 6 років тому +1

    why do you like integrating so much tho?

  • @Pramodpatel034
    @Pramodpatel034 Рік тому

    Kaha se ho bhaiya jo aise bol rhe ho

  • @shashankbalaji4122
    @shashankbalaji4122 6 років тому +2

    Hey! We need some new integrals!

  • @alexandru8431
    @alexandru8431 6 років тому

    Can you help me with integral from 1 to 9 of [ln x]/x?

    • @alexandru8431
      @alexandru8431 6 років тому

      Great! Thanks. But is it possible to solve it like [ln x] is the hand around of ln x?

  • @user-qq6si7zv3t
    @user-qq6si7zv3t 6 років тому

    Good explanation, but please use a better audio setup. The echo makes listening to this hard. It makes it louder and harder to hear at the same time.

  • @albertschotschneider5024
    @albertschotschneider5024 6 років тому

    That's a boi right there!

  • @arielfuxman8868
    @arielfuxman8868 3 роки тому

    Jordan's lemma is crying

  • @KalikiDoom
    @KalikiDoom 6 років тому +1

    best way!

  • @vandanamallikarjun3045
    @vandanamallikarjun3045 4 роки тому

    Sir I have one problem plz give me solution

  • @elyesayadi9184
    @elyesayadi9184 4 роки тому

    a siple application o the residue theorem could've made the ime spent solving this integral 4 ties less

  • @unknown360ful
    @unknown360ful 6 років тому +4

    FIRST COMMENT! PAPA FLAMMY, HAVE A FLAMMY DAY!! #NotificationSquadBois

    • @unknown360ful
      @unknown360ful 6 років тому

      Definitely with the help of some of Papa Flammy's Flammable Lasers!

  • @Armytechrex
    @Armytechrex 6 років тому +1

    Paul Ërdos

  • @ShubhamBhushanCC
    @ShubhamBhushanCC 5 років тому

    Soo.... = 1 ? By fundamental theorem of engineering

  • @VaradMahashabde
    @VaradMahashabde 4 роки тому

    Why did this get recommended to me now?

  • @hejaeg
    @hejaeg 5 років тому

    impactante

    • @hejaeg
      @hejaeg 5 років тому

      me encanta la matemática, pero desde que veo tus vídeos mi gusto se a incrementado notablemente, me fascina ver que hay retos interesantes en las integrales, integrales que no podía hacer ni me imaginaba como hacerlas

  • @islamzico7016
    @islamzico7016 5 років тому

    residue theorem

  • @Pramodpatel034
    @Pramodpatel034 Рік тому

    Indai ke to nahi lagta ho

  • @himanshumallick2269
    @himanshumallick2269 6 років тому +1

    That was what I was looking for!
    But there were some issues with the solution of this problem using Laplace transform as pointed out here:
    artofproblemsolving.com/community/q1h1621189p10146292
    Also, plz solve the integral posted by Kent Merryfield on the same page. I am stuck on that one.

  • @hoodedR
    @hoodedR 6 років тому

    HUH?!!? sneaky flammy where did u come from?!

  • @yashsrivastav3859
    @yashsrivastav3859 2 роки тому

    Why do we need to study such complex mathematics? 🙃 (wondering this before my end semester exams tomorrow 🤣)

  • @sajateacher
    @sajateacher 6 років тому

    Lost me on that one... I'll have to read up on complex analysis...

  • @alissonmelisaruiz6608
    @alissonmelisaruiz6608 5 років тому +1

    Te amo :u

  • @ABHisheKSHarma-cd1cf
    @ABHisheKSHarma-cd1cf 5 років тому

    Bro i want to help u but i m poor ..sorry

  • @simontimothy7051
    @simontimothy7051 4 роки тому

    He looks like Daniil Dubov

  • @rishabhgaud
    @rishabhgaud 4 роки тому

    There is some mistake in it

  • @zactron1997
    @zactron1997 6 років тому +1

    ❤️

  • @u3nd311
    @u3nd311 3 роки тому

    You're always sayin' "my boys".... What about the girls? 😁

  • @elizabethmeghana9614
    @elizabethmeghana9614 4 роки тому +1

    Your explanation is good, but your handwriting is not good. Please work on your handwriting to reach vast number of viewers.

  • @integral-magic6061
    @integral-magic6061 4 роки тому

    Please antiderivative of f(x)=lncosx