An Interesting Rational Equation

Поділитися
Вставка
  • Опубліковано 25 гру 2024

КОМЕНТАРІ •

  • @MrTeniguafez
    @MrTeniguafez День тому +10

    Factoring by grouping does work here, unless I messed up somewhere.
    x^4 - 1 + 2x^3 - 2x
    (x^2 + 1)(x^2 - 1) + 2x(x^2-1)
    You can factor out (x^2-1) and proceed

    • @張謙-n3l
      @張謙-n3l День тому

      This works, you can simply use the expand function on Symbolab to confirm it

    • @SyberMath
      @SyberMath  23 години тому

      Very good!

  • @giuseppemalaguti435
    @giuseppemalaguti435 День тому +7

    (x-1)(x+1)^3=0

  • @TedHopp
    @TedHopp 18 годин тому +1

    In the first method, once you get to a quartic, the first step should be to look at the sum of coefficients. If it's zero (which it is), we know immediately that 1 is a solution. We can then factor by grouping, with that in mind. Similarly, if we compare the sum of coefficients for the even exponents to that for the odd, we find that they are equal, meaning that -1 is also a solution.
    That immediately eliminates the need to reduce the quartic. (By the way, I didn't pay close attention, but I think you dropped a 2y term.)

  • @張謙-n3l
    @張謙-n3l День тому +2

    factorization does work, we just need a different way of grouping:
    x^4 + 2x^3 - 2x - 1 = 0
    x^4 - 1 + 2x^3 - 2x
    (x^2+1)(x^2-1) + 2x(x^2-1) = 0
    by the distribution rule, the LHS is (x^2+2x+1)(x^2-1)
    (x^2+2x+1)(x^2-1) = 0
    (x^2+2x+1) = (x+1)^2
    (x^2-1) = (x+1)(x-1)
    so the equation can be factorized as
    (x-1)(x+1)^3 = 0
    so x can be 1 or -1

  • @bobbyheffley4955
    @bobbyheffley4955 День тому +3

    X=1, X=-1 (triple root)

  • @scottleung9587
    @scottleung9587 День тому +1

    Got 'em both!

  • @neuralwarp
    @neuralwarp День тому +1

    It's pretty shoddy to upload unchecked (wrong) solutions.

  • @guyhoghton399
    @guyhoghton399 День тому +2

    x⁴ + x³ + x³ - x - x - 1 = 0
    ⇒ x³(x + 1) + x(x² - 1) - (x + 1) = 0
    ⇒ (x + 1)( x³ - 1 + x(x - 1) ) = 0
    ⇒ (x + 1)( (x - 1)(x² + 1 + x) + x(x - 1) ) = 0
    ⇒ (x + 1)(x - 1)(x² + 2x + 1) = 0
    ⇒ (x + 1)³(x - 1) = 0
    Happy Christmas!

  • @monpseudo100
    @monpseudo100 4 години тому +1

    x^4+2x^3-2x-1=0
    x^4-1+2x(x^2-1)=0
    (x^2-1)(x^2+1)+2x(x^2-1)=0
    (x^2-1)(X^2+1+2x)=0
    (X-1)(x+1)(x+1)^2=0
    (x-1)(x+1)^3=0

  • @johns.8246
    @johns.8246 21 годину тому

    Yo, I need help proving there is a unique prime p such that p^3 - p + 9 is a perfect square.

  • @ahmadrahimi6940
    @ahmadrahimi6940 День тому +1

    Too long answer, there is shorter way that guys suggested.

    • @SyberMath
      @SyberMath  23 години тому +1

      Interesting! Maybe I can make a video about that!

  • @rogerharrison6870
    @rogerharrison6870 День тому

    You mixed up x^2 & x^3 in the middle of method 1

  • @rakenzarnsworld2
    @rakenzarnsworld2 22 години тому

    x = 1 or -1

  • @christopherellis2663
    @christopherellis2663 День тому

    x=1 0:33 guessing x=-1

  • @raghvendrasingh1289
    @raghvendrasingh1289 3 години тому

    👍
    x^4+2x^3-2x-1 = 0
    consider
    (x+1)^4 = x^4+4 x^3+6 x^2+4 x+1
    2(x+1)^3 = 2x^3+6 x^2+6 x+2
    hence
    (x+1)^4 - 2 (x+1)^3 = 0
    (x+1)^3 (x-1) = 0
    x = -1 ,-1 , -1 , 1

  • @anshult
    @anshult 16 хвилин тому

    ua-cam.com/users/shortsQql-4XAAfyQ?si=ShpTEQ2fx2Z6Fu3F

  • @vladimirkaplun5774
    @vladimirkaplun5774 23 години тому

    x=±1 at a glance. The rest is not interesting

    • @SyberMath
      @SyberMath  23 години тому

      😁😄😁😄😁😄😜😂😂

  • @Don-Ensley
    @Don-Ensley День тому +1

    MERRY CHRISTMAS 🎁🎄 🎅🏻 ❤❤
    problem
    (2x + 1) / (x + 2) = x³
    Domain: x ≠ -2
    Multiply by x + 2 .
    2x + 1 = x³ ( x + 2 )
    Expand. Put in standard form.
    x⁴ + 2 x³- 2 x - 1 = 0
    Since the sum of the coefficients is 0, x = 1 is a root and x -1 is a factor. Factor.
    (x - 1) x³ + 3 (x - 1) x² + 3 (x - 1) x + (x-1) = 0
    x⁴ + 2 x³- 2 x - 1 = (x-1)(x³ +3x² +3x+1)
    Use the zero product property.
    x³ +3x² +3x+1 = 0
    x = -1 is a root, so x+1 is a factor. Factor.
    (x+1)x² + 2(x+1)x+(x+1) = 0
    x³ +3x² +3x+1 = (x+1)(x² + 2x +1)
    x⁴ + 2 x³- 2 x - 1 = (x-1)(x+1)(x² + 2x +1)
    x² + 2x +1 = (x+1)²
    Factored form of
    x⁴ + 2 x³- 2 x - 1 = 0
    is
    (x-1)(x+1)³ = 0
    x = 1 is a root and x = -1 is a triple root.
    Discussion:
    The graph is interesting because it is the intersection of the cubic y = x³ with an hyperbola having vertical asymptote at x = -2 and horizontal asymptote of y = 2. The cubic intersects only the branch of the 2 branched hyperbola with x > -2.
    answer
    x ∈ { -1, 1 }

    • @SyberMath
      @SyberMath  23 години тому

      Merry Christmas! Happy Holidays!!! 🎁🎄 😍

    • @Don-Ensley
      @Don-Ensley 3 години тому

      @@SyberMath thank you 🙏