2. Forbidding a subgraph I: Mantel's theorem and Turán's theorem

Поділитися
Вставка
  • Опубліковано 8 лис 2024

КОМЕНТАРІ • 21

  • @Bridgelessalex
    @Bridgelessalex 4 роки тому +6

    Amazing lecture!

  • @duanqinkai9084
    @duanqinkai9084 Рік тому

    really save my graph theory course!!

  • @wesolyfoton
    @wesolyfoton 4 роки тому +8

    omg... this cameraman...

  • @munahassan9860
    @munahassan9860 3 дні тому

    13:00 Turan Graphs

  • @ABC-jq7ve
    @ABC-jq7ve Рік тому +4

    Stop following the guy around with the camera!!
    I want to see the blackboard. We're here to lean to theorems, not to admire the guy's shirt!!

  • @mericegeericek1032
    @mericegeericek1032 11 місяців тому

    58:01 you can see the disappointment he has when no one answers the question xd.

  • @priscilla6865
    @priscilla6865 3 роки тому +1

    haha, some magic happens

  • @subendhusarkar2870
    @subendhusarkar2870 8 місяців тому

    The cameraman is just horrible!

  • @Leeidealist
    @Leeidealist 2 роки тому

    Lol the most annoying camera man ever

  • @无敌美男子-y5t
    @无敌美男子-y5t 2 роки тому +2

    To be honest, it is not a clear lecture. Maybe MIT students are smart enough to learn totally

    • @mericegeericek1032
      @mericegeericek1032 11 місяців тому +2

      I am an high school math olympiad student and actually the explanations he makes are understandable because the class he is teaching isnt an ordinary class. Proofs are somewhat shortened since they all benefit from generally accepted inequalities. It would have taken too long if he explained all of them

  • @xcl9189
    @xcl9189 4 роки тому

    chinese teachers like to do the things that proceed without predefined variables before glance at audience and small smile thinking take that pupils . don't ask me how to know that because i am a chinese teacher too

    • @Bridgelessalex
      @Bridgelessalex 4 роки тому +11

      Well, that is a stereotype that I have never heard of

  • @SSNewberry
    @SSNewberry 4 роки тому

    Slow students.

    • @vipinbhat6971
      @vipinbhat6971 4 роки тому +6

      Stirling Newberry it is called being rigorous, something you probably have no idea about.

    • @SSNewberry
      @SSNewberry 4 роки тому

      @@vipinbhat6971 There are lots of things that are rigorous which do not make a prediction. Which is point.

    • @vipinbhat6971
      @vipinbhat6971 4 роки тому +5

      What are you going on about?

    • @DionysiosArvanitakis
      @DionysiosArvanitakis 4 роки тому +1

      what a miserable person you are

    • @1nd93dk3
      @1nd93dk3 3 роки тому +4

      What a mean person. As mentioned above, In mathematics you also have to be rigorous.