Support Vector Machine (SVM) in 7 minutes - Fun Machine Learning

Поділитися
Вставка
  • Опубліковано 7 лис 2024

КОМЕНТАРІ • 334

  • @Augmented_AI
    @Augmented_AI  3 роки тому +1

    ⭐ If you enjoy my work, Id really appreciate a Coffee😎☕ - augmentedstartups.info/BuyMeCoffee

  • @Abdullah-mg5zl
    @Abdullah-mg5zl 6 років тому +551

    Here is a quick *summary* of this video:
    -SVM can be used to do *binary* classification
    -SVM finds a *hyper-plane* (line in 2d, plane in 3d, etc) that separates its training data in such a way that the distance between the hyper plane and the closest points from each class is maximized
    -once SVM finds this hyper-plane, you can classify new data points by seeing which side of this hyper-plane they land on
    -SVM can only be used on data that is *linearly separable* (i.e. a hyper-plane can be drawn between the two groups)
    -Fear not though, as a common way to make data linearly separable is to map it to a *higher dimension* (but beware, as this is computationally expensive).
    -You can map it however you want, but there are established ways to do it, they are called *Kernels* . By using a combination of these Kernels, and tweaking their parameters, you'll most likely achieve better results than making up your own way :P
    -The really cool thing about SVMs are that you can use them when you have *very little data* compared to the number of features each of your data points has. In other words, when the number of data to the number of features per data ratio is low. Normally when this ratio is low, you experience overfitting, but since SVMs only use a few of your data points to create the hyper-plane in the first place, it doesn't really care that you give it such little data. Note however that accuracy of predictions is reduced when you use very little data.
    -SVMs simply tell you what class a new data point falls in, *not the probability* that it's in that class. This is of course a disadvantage.
    Thanks for such a fun, engaging, simple, yet *informative* explanation of SVMs! Really enjoyed watching this!

  • @kashemvai5025
    @kashemvai5025 5 років тому +131

    I learnt more in this video than two months of classes.

    • @Augmented_AI
      @Augmented_AI  5 років тому +8

      It means a lot. Thank you for the comment. I'm glad I could help 😊

    • @Gentleman217
      @Gentleman217 4 роки тому +1

      mi2

    • @amruthn3272
      @amruthn3272 4 роки тому

      Exactly 😂😂😂😂

    • @ai.simplified..
      @ai.simplified.. 3 роки тому +2

      You are in wrong class

    • @Augmented_AI
      @Augmented_AI  3 роки тому

      ⭐ Thanks, Also if you enjoy my work, Id really appreciate a Coffee😎☕ - augmentedstartups.info/BuyMeCoffee

  • @frankhuo2855
    @frankhuo2855 5 років тому +20

    whoever came up with this Support Vector Machine method is a fucking genius! To try to convert a seemingly unsolvable situation to a familiar solvable situation and then apply the traditional solution. Such a simple concept but benefited so many industries. Salute. Wish I could be like the person.

    • @Augmented_AI
      @Augmented_AI  3 роки тому +1

      ⭐ Haha yeah he or she is genius!! BTW if you enjoy my work, Id really appreciate a Coffee😎☕ - augmentedstartups.info/BuyMeCoffee

    • @IvanKleshnin
      @IvanKleshnin 22 дні тому

      The algorithm was invented by a group of soviet mathematicians, working for AT & T Bell.
      Initial version dates back to 60-s, and this kernel trick, if I'm not mistaken, was added in 90-x (invented by different people and repurposed for this algo). It's all genious indeed.

  • @jthweatt412
    @jthweatt412 4 роки тому +4

    Took Linear Algebra and _just_ learned what all that "kernal" stuff was about. Thank you!

  • @VOGTLANDOUTDOORS
    @VOGTLANDOUTDOORS 3 роки тому +2

    MOST USEFUL, INFORMATIVE video I've come across yet for answering the question "WHAT IS a Support Vector Machine?" :-)
    So many OTHER videos try to tell you merely HOW to USE SVMs, WITHOUT actually DEFINING them; this is ever-and-always a clear indication of LACK OF GENUINE "UNDERSTANDING", because all their focus is on only on the "HOW"...
    IN SHARP (and HAPPY) CONTRAST, YOUR video appears genuinely PLEASED to START with an explanation of WHAT "Support Vectors" ARE, and HOW the term "Support Vector Machine" even got DERIVED ! FANTASTIC !
    NICELY DONE.
    MORE grease to your elbows !
    -Mark Vogt | Fellow Data Scientist/Consultant/Solution Architect in Chicagoland area...

  • @renesalmon4812
    @renesalmon4812 5 років тому +2

    Wow! I spend many hours trying to understand what I have learned in classes... so many words and logic functions but no big picture in my head that helped me to understand why and how I use it. but you simplyfied it so nice with simple storytelling, pratical selfexplaining pictures and videos that give me a good picture why and how I use it. Thank you so much. Great work! ;-)

    • @Augmented_AI
      @Augmented_AI  5 років тому +1

      Thank you Rene I'm glad you enjoyed the video. 😁. Yeah the reason I made this video was to make these very hard topics easier to grasp especially for people who are just starting out in the field of machine learning.

  • @shauryasharma2865
    @shauryasharma2865 5 років тому +8

    The most succinct and beautiful explanation of SVM I have found! I was struggling to grasp the basics. Thank you so much for creating such a wonderful tutorial! :)

  • @makwanabhavin8089
    @makwanabhavin8089 5 років тому +10

    Ahh... You show Majin Boo under the Margin... Smart... And really wonderful Explanation of SVM. keep up the good work.

    • @Augmented_AI
      @Augmented_AI  5 років тому +6

      I'm glad there are some Dbz fans out there 😁. Thanks for the comment.

  • @jenniferaduwo6635
    @jenniferaduwo6635 5 років тому +3

    Thanks for the simplified explanation, it makes learning fun, you are my academic hero

    • @Augmented_AI
      @Augmented_AI  5 років тому

      Love these comments😁. I'm glad I could help and make learning fun! Thank you.

  • @santheepskovoor1241
    @santheepskovoor1241 3 роки тому +1

    Very Helpful to understand the Basic concept. Thank You.

  • @adityag3563
    @adityag3563 4 роки тому

    Thanks for using the cat/dog identification example to explain the concept of SVM. After watching many videos, I came across the right one that gave me a basic idea of SVM.

    • @Augmented_AI
      @Augmented_AI  3 роки тому

      Thank you Aditya G :). I am really glad you enjoyed the video and that it made sense to you. If you have anything that you want me to make a video about, just use the hashtag #augmentedstartups with your comment and I'll see what I can do.
      If you haven't already, check out my channel page to see all of the topics I've covered so far www.augmentedstartups.info/UA-cam or check out our courses here www.augmentedstartups.com/store
      or you can consider becoming a member of Augmented Startups and get access to Advanced Tutorials :)
      ua-cam.com/channels/FJPdVHPZOYhSyxmX_C_Pew.htmljoin
      I look forward to seeing you around! 👊

  • @darkrider6316
    @darkrider6316 4 роки тому +1

    Thanks a lot sir।
    Very helpful video for me .
    Love from republic of india. ❤️❤️❤️

  • @normalmighty
    @normalmighty 5 років тому +3

    This is better than I was hoping for! Thanks so much for making videos that easily summarize the important parts of my uni papers!

  • @bt9604
    @bt9604 4 роки тому +2

    Thanks and lots of love from INDIA 😍

    • @Augmented_AI
      @Augmented_AI  4 роки тому +1

      Thank you Sachin. Really appreciate it 😁

  • @benneteapen
    @benneteapen 6 років тому

    Your explanation was phenomenal. No one could possibly explain it in simpler terms.

    • @Augmented_AI
      @Augmented_AI  6 років тому

      +Bennet Eapen thank you, glad you enjoyed it :)

  • @sruthisrinivasan3622
    @sruthisrinivasan3622 3 роки тому +1

    It's really helpful to understand with some real time example! Thanks!

  • @harshdhiman22
    @harshdhiman22 4 роки тому

    The first point discussed in advantages contradicts the one discussed in disadvantages. Please clear this!!

  • @CHANTI8947
    @CHANTI8947 7 років тому +12

    Great Introduction..your usage of visual aids is just fantastic!!

  • @surajitbaruah606
    @surajitbaruah606 3 роки тому

    Very intuitive. Explained SVM so clearly.

  • @padisalashanthan98
    @padisalashanthan98 4 роки тому +1

    One of the best videos I have seen on UA-cam to date. Given a perfect intuition and explanation on SVMs!

    • @Augmented_AI
      @Augmented_AI  4 роки тому +2

      Thank you so much 😁. Please share this video if it was helpful, I'd really appreciate it

    • @padisalashanthan98
      @padisalashanthan98 4 роки тому +1

      @@Augmented_AI Definitely! :)

    • @padisalashanthan98
      @padisalashanthan98 4 роки тому +1

      BTW, do you know any good APIs which provide Traffic flow History data?

    • @Augmented_AI
      @Augmented_AI  4 роки тому +2

      @@padisalashanthan98 nothing as yet. But I'll look into it

    • @padisalashanthan98
      @padisalashanthan98 4 роки тому +1

      @@Augmented_AI Thank you very much!

  • @larryparker7081
    @larryparker7081 5 років тому +2

    Awesome you added Margin Buu, I have never thought about it like that.

    • @Augmented_AI
      @Augmented_AI  5 років тому

      Had to throw in the dbz reference 😁

  • @rathnamalasit7042
    @rathnamalasit7042 5 років тому +2

    Thank you sir for teaching in an easy and understandable way

  • @AShah1313
    @AShah1313 5 років тому +19

    This is very helpful. Thanks for creating this valuable content!

    • @Augmented_AI
      @Augmented_AI  5 років тому

      Thank you I'm so glad you enjoyed it 😊

  • @tripleO16
    @tripleO16 5 років тому +12

    I see what you did with that "Margin" Buu :D.
    Anyway thanks this was easy, clear and isn't boring like most other guides

    • @Augmented_AI
      @Augmented_AI  3 роки тому

      ⭐ Haha, Thanks, Also if you enjoy my work, Id really appreciate a Coffee😎☕ - augmentedstartups.info/BuyMeCoffee

  • @kachappillyjean
    @kachappillyjean 5 років тому

    This is an icy cool explanation of a very tough concept to grasp, especially for beginners like me. Thank you so much for making this. Saves so much time and frustration.

  • @kikibpps8601
    @kikibpps8601 3 роки тому +1

    nice.. you make it easy to understand the concept of svm

    • @Augmented_AI
      @Augmented_AI  3 роки тому

      Glad you enjoyed it 😁. What would you like to see next

  • @andinip9054
    @andinip9054 2 роки тому +1

    I want to ask the difference between "features" and "dimensions". Because there are contradictions in the advantages and disadvantages of these two things. Also, can you tell which example is a feature or dimension in the image classification. Hope that I got the answer, thank you

  • @quebono100
    @quebono100 6 років тому +1

    thats the best explanation i heard yet

  • @creativecore3575
    @creativecore3575 3 роки тому

    I love your approach on teaching things that should be made fun learning :)

  • @MayankGupta-el9rj
    @MayankGupta-el9rj 5 років тому

    Simple and easy explanation of SVM. Thank you.

  • @innocentdude
    @innocentdude 6 років тому

    This video helped in clear conceptual understanding on non linear SVM. Thanks for uploading

  • @itsfabiolous
    @itsfabiolous 3 роки тому +1

    Amazingly easy explained!

  • @angelalee8825
    @angelalee8825 4 роки тому +1

    i live for this kind of explanation. Cute and easy to understand. Thanks!

    • @Augmented_AI
      @Augmented_AI  4 роки тому

      Yeah. 😁 Learning should fun right?

  • @ferryt2544
    @ferryt2544 5 років тому +2

    Awesome, I can finally understand what the SVM is!

  • @rewansallam1812
    @rewansallam1812 2 роки тому +1

    you are a genius really genius much thanks, may Allah bless you

  • @silusvilus6544
    @silusvilus6544 6 років тому

    Great explanation. The use of visual examples make it easy to understand SVM

  • @mathaka-ekathuwa
    @mathaka-ekathuwa 5 років тому

    The Best Explanation, I ever hear about the support vector machine..

  • @mohang3117
    @mohang3117 6 років тому +28

    The 2nd point of Advantage(5:08) and 1st point of dis-advantage(5:39) are looks similar. Which means in advantage you specified that SVM perform well even though the number of dimension or features is greater then number of samples. But in dis-advantage it is stated that SVM will perform poor if #features > #samples. Isn't looks like contradictory ? is my understanding right?

    • @jakubromanski9922
      @jakubromanski9922 6 років тому +5

      yeah, can someone explain that? Isn't it that the #features == #dimensions?

    • @Mustafa-jy8el
      @Mustafa-jy8el 6 років тому +2

      I'm having the same confusion. Can someone help?

    • @vishnurnambiar292
      @vishnurnambiar292 5 років тому +2

      @@Mustafa-jy8el SVM can be used when the no of datapoints < the no of features or no of dimentions or variables
      when this is not the case it is a disadvantage. I think in the video there is a confusion.

    • @ominous450
      @ominous450 5 років тому +1

      I was confused by this too

    • @moidhassan5552
      @moidhassan5552 5 років тому +1

      same

  • @nadiaappelach6925
    @nadiaappelach6925 5 років тому

    Thank you, that helped me a lot calming down before the exam tomorrow on Machine Learning!

  • @whitesnowable
    @whitesnowable 3 роки тому +1

    Thank you!well explained

  • @everywhereman9003
    @everywhereman9003 3 роки тому

    TensorFlow is a free and open-source software library for machine learning. It can be used across a range of tasks but has a particular focus on training and inference of deep neural networks. Tensorflow is a symbolic math library based on dataflow and differentiable programming.

  • @mudassirneyaz3985
    @mudassirneyaz3985 5 років тому

    Stop scrolling to comments. pay heed to what he is teaching. he is awesome

  • @raghavgupta1881
    @raghavgupta1881 5 років тому

    Really intrigued by the way you teach these topics like they're nothing. Could you help me with how to get started in machine learning in python? I know how python 3 works.

  • @starrynyt1110
    @starrynyt1110 5 років тому

    i can easily understand how svm works! thx for the video!

  • @jackb9045
    @jackb9045 6 років тому

    This video was so good! Thanks to you I'll pass my data science class!

    • @Augmented_AI
      @Augmented_AI  6 років тому

      That's really great to hear Jack! 😀 I'm really glad that these videos could help you.

  • @anubhavtyagi4359
    @anubhavtyagi4359 3 роки тому +1

    Best video
    Love from india

  • @josephchang9480
    @josephchang9480 6 років тому +1

    Your videos are always amazing and so well-explained.

  • @amreshgiri4933
    @amreshgiri4933 6 років тому +15

    You deserve a lot more subscribers. Awesome explanation :)

    • @Augmented_AI
      @Augmented_AI  6 років тому

      Thank you so much Amresh, I really appreciate the comment. :) The subscribers will come soon 😎

  • @ishikagarg5261
    @ishikagarg5261 5 років тому +2

    Your teching is very good. Thank you sir for teaching us in easy way.

  • @sravaninallabelli1251
    @sravaninallabelli1251 3 роки тому +1

    What is Twin support vector machine (TWSVM) and how it is differ from SVM pls tell me

  • @rahelrosen2769
    @rahelrosen2769 3 роки тому

    This was very clear and helpful, thank you!

  • @filick82
    @filick82 7 років тому

    Excellent video. Thanks for showing the applications of such powerful tool.

    • @Augmented_AI
      @Augmented_AI  7 років тому

      +filick82 thank you, I really appreciate it :)

  • @aditydud
    @aditydud 6 років тому

    A very excellent explanation..... And efficient use of visualisation

  • @vinayjosebaby213
    @vinayjosebaby213 6 років тому

    which is a better classifier if we are using multiple biosignals for analysis???

  • @dineshkumarmurugan3281
    @dineshkumarmurugan3281 7 років тому +11

    Wonderful explanation.. thank you so much..

    • @Augmented_AI
      @Augmented_AI  7 років тому

      +DINESHKUMAR MURUGAN thank you so much for the support :)

  • @orkaming6218
    @orkaming6218 4 роки тому +1

    neat and precise, thanks for your explaination

    • @Augmented_AI
      @Augmented_AI  4 роки тому

      You are most welcome. What would you like to see next?

    • @manuelkarner8746
      @manuelkarner8746 4 роки тому

      @@Augmented_AI how big Reinforcment Learning Projects like for Dota 2 are aproached :)

  • @sagarbuddy6284
    @sagarbuddy6284 4 роки тому +1

    Thank you for such an insightful video. I finally learned what SVM is. Can you please tell me which software do you use for video editing?
    Thanks for all your help

    • @Augmented_AI
      @Augmented_AI  4 роки тому

      I'm glad I could help you learn SVM 😁👍. Sure I use video scribe for it.

    • @sagarbuddy6284
      @sagarbuddy6284 4 роки тому

      Thanks for letting me know 😊

  • @kaisheryezdany9693
    @kaisheryezdany9693 4 роки тому +1

    Wonderful explanation sir!

  • @ravindrabvs45
    @ravindrabvs45 4 роки тому

    A great explanation. Could you suggest where we could learn these type of animations for teaching ? Thank you.

  • @BharatKumar-pq9xy
    @BharatKumar-pq9xy 6 років тому

    Incredible explanation sir.

  • @rishabhlaheja7689
    @rishabhlaheja7689 5 років тому +2

    Very well explained! 👍

  • @amanyadav.16
    @amanyadav.16 5 років тому +1

    Awesome Explanation covered and explained brilliantly.

    • @Augmented_AI
      @Augmented_AI  5 років тому +1

      Thank you Aman 😁. Really appreciate the feedback

  • @tonypendletoniii3209
    @tonypendletoniii3209 5 років тому +2

    RIP Grumpy Cat :) You were the GOAT

  • @BilalAhmed-ib3yw
    @BilalAhmed-ib3yw 6 років тому

    The best explained video onSVM

    • @Augmented_AI
      @Augmented_AI  6 років тому

      Thank you Bilal, I really appreciate it :)

  • @kannanchandrasekaran3561
    @kannanchandrasekaran3561 5 років тому

    Good video! crisp! it would be great if you make v2 of this video touching "soft margin" SVM as well

  • @shaikshabeenabegum5718
    @shaikshabeenabegum5718 7 років тому

    this video is very helpful to understand support vector machines

    • @Augmented_AI
      @Augmented_AI  7 років тому

      +Shaik Shabeena Begum thank you I'm glad it was easy to understand :)

  • @pratikanand2200
    @pratikanand2200 5 років тому

    which tools you use for this visualization.

  • @valeriaperez-cong9858
    @valeriaperez-cong9858 7 років тому +1

    It was pretty pretty useful! Thank you so much!

    • @Augmented_AI
      @Augmented_AI  7 років тому

      +Valeria Pérez - Cong thank you for the comment :) I really appreciate it.

  • @munchlaxx3350
    @munchlaxx3350 5 років тому

    Awesome video! You have a great style of teaching.

  • @deojeetsarkar2006
    @deojeetsarkar2006 5 років тому

    So it is a supervised learning method? And is line drawn by us?

  • @prash23R
    @prash23R 5 років тому

    I'm having a little trouble in understanding what kernel trick is. Could you please explain a bit more about it?

  • @jalakamkiran7392
    @jalakamkiran7392 4 роки тому

    Aweeeeeeeeeesomeeee...one of the best videos on SVM's

  • @leonelhernandez6027
    @leonelhernandez6027 5 років тому

    So if SVM has the disadvantage of not giving the probability, it can't be used for predictions right? What about using SVR for prediction? Could you do a video about SVR?

  • @haroldfelipezuluagagrisale3875
    @haroldfelipezuluagagrisale3875 4 роки тому

    Great channel for educational videos, the best, very interesting !!

  • @rolandettema
    @rolandettema 7 років тому

    Hi what a great video. I need to explain also a complex subject. With what tool did you make the drawing animations?

  • @masthikaro
    @masthikaro 3 роки тому +1

    How to get these cool doodles into a presentation? Is there any software for it or it's drawn manually?

  • @shyamvishnu3913
    @shyamvishnu3913 4 роки тому

    In the advantages of SVM you mentioned it is useful when number of dimensions is greater than the samples, and in the disadvantages you said it has poor performance when number of features is greater than number of samples. What is the difference between the 2 (Dimension and features) ?

    • @andinip9054
      @andinip9054 2 роки тому

      same, I'm still confused about it too. have you gotten the answer?

  • @PV10008
    @PV10008 5 років тому

    I understand how SVMs are used for classification but how are they used for regression?

  • @hayatullah3135
    @hayatullah3135 6 років тому

    great video... thump up for clear explanation

  • @nobelchor712
    @nobelchor712 6 років тому

    Your video quality is very good. Would you please let me know how you make your videos? like which software

  • @CMSWisCon
    @CMSWisCon 5 років тому +1

    Very useful! Short and crisp.. Which editing software have you used to make this video?

    • @Augmented_AI
      @Augmented_AI  5 років тому +1

      Thank you 😊. Using videoscribe

  • @mfranca94
    @mfranca94 6 років тому

    Fantastic introduction

    • @Augmented_AI
      @Augmented_AI  6 років тому

      Thank you, I really appreciate it :)

  • @fardaddanish8113
    @fardaddanish8113 4 роки тому

    sir please make exploratory video on gender text idenfication features and techniques

  • @sparklelight
    @sparklelight 4 роки тому +1

    Good examples

  • @akankshyapunji494
    @akankshyapunji494 6 років тому +1

    Very clearly explained

    • @Augmented_AI
      @Augmented_AI  6 років тому

      Thank you Akankshya, I really appreciate the comment :)

  • @ankushrai9522
    @ankushrai9522 6 років тому

    thanks for easy explanation.

  • @shreyaschaturvedi1933
    @shreyaschaturvedi1933 3 роки тому +1

    very well explained! thank you :)

    • @Augmented_AI
      @Augmented_AI  3 роки тому

      Thank you Shreyas Chaturvedi :). I am really glad you enjoyed the video. If you have anything that you want me to make a video about, just use the hashtag #augmentedstartups with your comment and I'll see what I can do.
      If you haven't already, check out my channel page to see all of the topics I've covered so far www.augmentedstartups.info/UA-cam or check out our courses here www.augmentedstartups.com/store
      or you can consider becoming a member of Augmented Startups and get access to Advanced Tutorials :)
      bit.ly/Join_AugmentedStartups
      I look forward to seeing you around! 👊

  • @songo94p
    @songo94p 4 роки тому

    @Alendy Senda what tool are you using for this amazing animation :) ?

  • @alexandterfst6532
    @alexandterfst6532 4 роки тому

    Excellent video !

  • @thomasfisherson
    @thomasfisherson 4 роки тому +1

    Great video! Good job!

  • @vindhyab1033
    @vindhyab1033 4 роки тому +1

    neatly explained !!

  • @enri8421
    @enri8421 5 років тому

    What is the difference between support vector machine and support vector networks?

  • @tiagotele1
    @tiagotele1 6 років тому

    Clear explanation!

  • @sudharsan4040
    @sudharsan4040 6 років тому

    Excellent explanation.

  • @hk6926
    @hk6926 4 роки тому +1

    great video . Thank you

  • @maheswaranramaraju4812
    @maheswaranramaraju4812 7 років тому

    Superb Explanation. I understood clearly:)

    • @Augmented_AI
      @Augmented_AI  7 років тому

      +MAGE VLOGs I'm glad it was clear and detailed. Thank you for the comment :)

  • @subinnair3835
    @subinnair3835 5 років тому +1

    Dear sir...this was very well explained !
    Can you please tell me where i can find the pyton video that u had mentioned ?

    • @Augmented_AI
      @Augmented_AI  5 років тому

      Thanks you Subin. The link is in the description for the course I give.

  • @gabrielnastari8513
    @gabrielnastari8513 4 роки тому +2

    YOU INSANE!! Augmented Startups!

  • @aakashjain5999
    @aakashjain5999 5 років тому +1

    Really good one.. keep up the good work