Equivariant Models | Open Catalyst Intro Series | Ep. 6

Поділитися
Вставка
  • Опубліковано 19 гру 2024

КОМЕНТАРІ • 6

  • @paranoid_android8470
    @paranoid_android8470 6 місяців тому

    Brilliant explanation! My only regret is, that I haven't found this earlier.

  • @harshagrawal2336
    @harshagrawal2336 7 місяців тому +1

    Too good!

  • @landland4827
    @landland4827 7 місяців тому

    Awesome video. May I ask how might I apply the Wigner D matrix?
    I have the sum wave function. Then right now, I am trying to shift it by A that's just a scalar/number and not a matrix. It works for one wave function, but for two it's not moving in unison and it seems to be moving independantly. (Not an issue, as expected).
    But, now, how do I go about getting the Wigner D and how to apply it? I figured I can do J=1/2, but it feels like I need to configure it with alpha,beta,gamma but what would those values be in this context?

    • @landland4827
      @landland4827 7 місяців тому

      Figured it out! Wigner D, should be initialized with J=0.5, alpha=0, gamma=0, Beta should be k*a, where k is the frequency of the basis function. Again, thanks for an awesome video.

  • @tilkesh
    @tilkesh 6 місяців тому

    Thanks

  • @raguaviva
    @raguaviva 7 місяців тому

    I love these brave women! Thanks for standing up!