Normal Quantile-Quantile Plots

Поділитися
Вставка
  • Опубліковано 10 гру 2024

КОМЕНТАРІ • 156

  • @kancheongspider
    @kancheongspider 8 років тому +46

    You, sir, are a gentleman and a scholar.

  • @samirakhatami2266
    @samirakhatami2266 8 років тому +13

    I loved the way you explained how the th quantiles are calculated. I was confused with different formulas other people have used in their videos without telling the underlying concepts. Keep it up!

  • @jbstatistics
    @jbstatistics  11 років тому +8

    You're welcome! I'm glad to hear that you find me clear and concise!

  • @akramnajjar
    @akramnajjar 2 роки тому +1

    I looked everywhere to find out why some use i/(n+1) and (i-0.5)/(n+1) . . . . while others use /n and not /(n+1) . . . . thanks for providing a pragmatic clarification of the use of a . . . . I was locked in this whirlpool and you got me out . . . keep well

  • @dirkneuhauser8213
    @dirkneuhauser8213 10 років тому +13

    This explained it far more clearly than my prof did, Thanks a lot

    • @jbstatistics
      @jbstatistics  10 років тому +1

      You are very welcome Ryan. I'm glad you found it helpful.

  • @thelateknights
    @thelateknights 3 роки тому +2

    Really appreciated the simulated values at the end so we could get a visual feel for it. Thanks!

  • @khanhtruong3254
    @khanhtruong3254 6 років тому

    I have looked at many videos on UA-cam, and yours are the best with many visual concrete examples. Not only Q-Q plot but also other concepts in statistics. Thank you very much.

    • @jbstatistics
      @jbstatistics  6 років тому

      Thanks for the kind words! I'm glad to be of help!

  • @TanmayKhot-k3i
    @TanmayKhot-k3i 4 місяці тому

    You explained this better than StatQuest with Josh Starmer
    Thanks a lot! This was very helpful

  • @mrigayu
    @mrigayu Рік тому +1

    I was watching your videos on the Hypothesis Testing playlist, and this video was a perfect supplement! Thank you for posting this and explaining all concepts so so intuitively and in a well-motivated manner!

  • @jbstatistics
    @jbstatistics  11 років тому +1

    You're welcome. I'm glad you found it useful.

  • @maning306
    @maning306 10 років тому +4

    This is the best explanation of QQ plot, period.

  • @jimrudolph1023
    @jimrudolph1023 9 місяців тому +1

    Great video. I was struggling with qq plots and you made the concept very clear.

  • @johanhendriks
    @johanhendriks 11 років тому +1

    This is very helpful, you are so much better, more concise, and clear in your way of teaching than my university teacher :)
    Thanks

  • @yuchenjia6681
    @yuchenjia6681 3 роки тому +1

    My favorite source for statistics learning! Thanks for the excellent work. It really helps!

  • @jbstatistics
    @jbstatistics  11 років тому +1

    You're welcome. And thanks for the compliment!

  • @artemyevtushenko8722
    @artemyevtushenko8722 4 роки тому +1

    This was the video that made it sink in. Thanks much!!

  • @Superogobongo
    @Superogobongo 5 років тому +15

    Finally, I understood this thing

    • @arslansu5188
      @arslansu5188 3 роки тому

      Şimdi ben de istiyorum 80 80 p

  • @annsway
    @annsway 9 років тому

    Your video is better than the lecture I'm taking...

  • @jbstatistics
    @jbstatistics  11 років тому +1

    Thanks Frâncio! I'm glad you liked it!

  • @djhaylock2288
    @djhaylock2288 2 роки тому

    Excellent explanation and illustration of QQ plots and distributions.

  • @Arjun_Deshpande_Geologist
    @Arjun_Deshpande_Geologist 6 років тому

    I had referred many lectures, could understand better than any. Thank you so much

  • @jbstatistics
    @jbstatistics  11 років тому +1

    You are welcome Susie, I'm glad to be of help!

  • @jbstatistics
    @jbstatistics  12 років тому +1

    You're welcome! I'm Glad to be of help!

  • @RaviShankar-jm1qw
    @RaviShankar-jm1qw Рік тому +1

    absolutely amazing!!! loved this video. Big thanks!

  • @ebenezerscrounge8398
    @ebenezerscrounge8398 4 роки тому +1

    You are a saviour 🙏 🙌.

  • @jbstatistics
    @jbstatistics  11 років тому

    You'd just have to look that up in the standard normal table in the usual ways. I have videos illustrating how to do this ("Finding percentiles using the standard normal table", or something to that effect). There are 2 main types of table, and I have videos for each one.

  • @CluckYou21
    @CluckYou21 3 роки тому

    OH MY GOD THANK YOU! 3 minutes it the "Oh!!!!!" moment hit me.

  • @rigae2
    @rigae2 3 роки тому

    Thank you, sir. You saved me again.

  • @goodwilrv
    @goodwilrv 9 років тому +1

    Very Nice and well explained in simple terms..thank you..!!

  • @pybokeh
    @pybokeh 11 років тому

    Thank you so much for this video. Explains Q-Q plotting very well.

  • @jbstatistics
    @jbstatistics  11 років тому

    At 5:10 or so: "We plotted the ith ordered value..."
    i = 1, 2, 3, 4, ..., 9 (since n = 9).
    The short version is that there are 9 values, so we split the distribution into 9 + 1 = 10 equal areas.

  • @suvalaki
    @suvalaki 12 років тому +1

    this is great. Now i can understand what R is doing! :)

  • @user-northeast
    @user-northeast 8 років тому +2

    Really nice introduction, and very informative

  • @susie519
    @susie519 11 років тому +1

    It was a very helpful video on q-q plot! Thanks a lot.

  • @audiliasujana8710
    @audiliasujana8710 9 років тому +6

    So concise and clear. Thank you.

    • @jbstatistics
      @jbstatistics  9 років тому +1

      +Audilia S You are very welcome!

  • @charlottechen6676
    @charlottechen6676 10 років тому +1

    Thank you so much! Clear and comprehensive!

  • @user-or7ji5hv8y
    @user-or7ji5hv8y 4 роки тому +1

    great video. really helps in building intuition.

  • @el_bur
    @el_bur Рік тому

    Perfectly explained!

  • @cth8802
    @cth8802 3 роки тому

    @ 6:11 ,how did they come up with (i-a)/(n+1-2*a) , where a is a chosen value from 0 to 1/2 ? Would appreciate it for a link to a good, credible explanation. Thanks all.

  • @jbstatistics
    @jbstatistics  11 років тому

    You're welcome!

  • @abelwang182
    @abelwang182 8 років тому +1

    Thank you very much. You are my lifesaver!

  • @savannahwang789
    @savannahwang789 3 роки тому

    Make sense, very clear. Thank you.

  • @noahrubin375
    @noahrubin375 3 роки тому

    Very nicely explained!

  • @yashwantkumar9996
    @yashwantkumar9996 7 років тому

    thanks for clear and perfect explaination. Good work

  • @Josefk40
    @Josefk40 10 років тому

    thank you very much for this quick and clear explanation. It is fantastic.

    • @jbstatistics
      @jbstatistics  10 років тому

      You are very welcome. Thanks so much for the compliment!

    • @yianchen9942
      @yianchen9942 10 років тому

      YES! I have also been watching this series! Very well-explained!

    • @jbstatistics
      @jbstatistics  10 років тому

      James A. Chen Thanks James. I'm glad to be of help.

  • @JanvanUnnik
    @JanvanUnnik 10 років тому +1

    Very well explained. Thank you!

  • @fredojean-baptiste3583
    @fredojean-baptiste3583 4 роки тому

    Thanks for such a great tutorial, the best one that I catched so far. It would be nice to post the R codes somewhere in your website.

  • @beccaberchtold6645
    @beccaberchtold6645 2 роки тому

    so touching for an excellent video

  • @tumul1474
    @tumul1474 4 роки тому +1

    thank you sir ! amazing experience

  • @afreymiller
    @afreymiller 7 років тому +1

    Fantastic explanation, thank you

    • @jbstatistics
      @jbstatistics  7 років тому

      You are very welcome, and thanks for the compliment!

  • @emadharazi5044
    @emadharazi5044 4 роки тому

    Excellent! Excellent! Excellent!!!

  • @vaibhavarora9408
    @vaibhavarora9408 4 роки тому

    Really good explanation!

  • @ither9095
    @ither9095 10 років тому +1

    Thank you very much. It is a very clear explanation!

  • @danlemay2087
    @danlemay2087 10 років тому

    This is a very good explanation. Thanks.

  • @jimko6814
    @jimko6814 9 років тому

    great video, cant find similar videos elsewhere

  • @stormcorrosion
    @stormcorrosion 11 років тому +1

    This is really helpful, thanks a lot!

  • @nguyenbaodung1603
    @nguyenbaodung1603 3 роки тому

    You literally saved me !!

  • @daphnaal
    @daphnaal 8 років тому +2

    Very well presented! Thanks a lot :)

  • @hanswurst4728
    @hanswurst4728 2 роки тому

    Super useful, thanks 👍

  • @pspsdan
    @pspsdan 8 років тому

    excellent description

  • @RRR66620
    @RRR66620 10 років тому

    Awesome work!

  • @anasbafaqeeh4193
    @anasbafaqeeh4193 9 років тому +1

    Thank you very much for your video. In the video, you splitter up the normal curve into 10 areas which is easy to do. How about if we have a sample of size 10 and we want to split up the curve into 11 areas?

    • @jbstatistics
      @jbstatistics  9 років тому +2

      It's pretty much the same thing. Choosing 10 equal areas makes for a simpler looking plot, and is a useful simple example, but the overall method stays the same for any sample size. For example, if n = 9 (so we are splitting the curve up into 10 equal areas), to find the appropriate z value to plot the minimum value against, in R we would use the command qt(1/10). If n = 10 (so we are splitting the curve up into 11 equal areas), to find the appropriate z value to plot the minimum value against, in R we would use the command qt(1/11). Cheers.

    • @anasbafaqeeh4193
      @anasbafaqeeh4193 9 років тому +1

      jbstatistics Great. Understood now. your Chanel is the best. I appreciate your help.

  • @TheSilentGentleman
    @TheSilentGentleman 11 років тому +1

    Helped a lot, thanks!

  • @廖俊翔-e1w
    @廖俊翔-e1w 10 років тому

    Incredibly good!

  • @yihongli8746
    @yihongli8746 4 роки тому +1

    Ohhhhhhhhhhhhhhhhhh! I got this! yeah! finally!

  • @JimmieABES
    @JimmieABES 10 років тому +1

    Thank you so much for this.

  • @manuelsojan9093
    @manuelsojan9093 6 років тому

    can you explain why at 6:45 those different formulas are the same? I'm confused...won't they yield different answers? When my teacher did it, he put (i - .375)/(n+.25).

    • @jbstatistics
      @jbstatistics  6 років тому

      There are different adjustments that have been suggested. They do not lead to the same values of course, but overall they all give a very similar picture.

  • @Franciobr
    @Franciobr 11 років тому

    What a great video. Superb job! Subscribed!

    • @UsmanUsman-iq7qk
      @UsmanUsman-iq7qk 5 років тому

      Frâncio Rodriguesbn Jr is a CT yes you y me for the rest of

  • @JigneshPatel-hf3jk
    @JigneshPatel-hf3jk 6 років тому

    4:42 on the x axis, the values range from -1 to +1. Are they z score?

    • @jbstatistics
      @jbstatistics  6 років тому

      The values on the x axis are theoretical quantiles of the standard normal distribution. They aren't based on sample data, so they are not z-scores in that sense, but they are z values from the standard normal distribution.

    • @sunilkumarsamji8871
      @sunilkumarsamji8871 4 роки тому

      @@jbstatistics How do you get these theoretical values or Z values that you plot as x-axis?

  • @maxxchannel2
    @maxxchannel2 10 років тому

    Great video! I only didn't understand how to get the straight line. Which are the first and third quantiles, the smallest and third smallest values of my sample?

  • @fyodorminakov4990
    @fyodorminakov4990 10 років тому

    You're the greatest!

  • @samanthaw603
    @samanthaw603 6 років тому

    It helps a lot! Thank you so much!

  • @ryanjones1704
    @ryanjones1704 11 років тому

    Seriously. Much appreciated.

  • @BaibhavSrivastaw
    @BaibhavSrivastaw 3 роки тому

    Can you please give some references for the function you used to approximate the quantiles? The (i-a)/(n+1 -2a) formula? Where does it come from?

  • @blkscreen15
    @blkscreen15 9 місяців тому

    very helpful. thank you

  • @jbstatistics
    @jbstatistics  11 років тому

    Thanks!

  • @Mikkelsapiens
    @Mikkelsapiens 5 років тому

    Why did you choose Z=-3 and Z=3. Is there a formua to choose Zmin and Zmax

  • @rat_trapper
    @rat_trapper 5 місяців тому

    Excellent!

  • @kraamis
    @kraamis 7 років тому

    it's very good and very simple explane!

  • @firstnamelastname4685
    @firstnamelastname4685 6 років тому

    could you kindly answer my question? Thank you! Not quite understand why in the strongly right-skewed distribution, the largest values are larger than would be expected, in the right-skewed distribution, there should be less large numbers than small numbers(the probability of the random variable to be small is higher)

    • @jbstatistics
      @jbstatistics  6 років тому

      It's all a question of how the distribution compares to the normal distribution. Try thinking about it this way: start with a normal distribution, then grab the right tail and pull it out to the right, such that it stretches out and more of the area is contained in the far right tail (then there was when the distribution was normal). Now we've got ourselves a right-skewed distribution. We can shift and scale it such that it has the same mean and variance as the original normal distribution, but there is going to be more area in the right tail. In a typical sample, the largest values we get are going to be greater than would be expected under normality. I hope this helps!

    • @firstnamelastname4685
      @firstnamelastname4685 6 років тому

      very clear thank you sir !!!!! I am studying in university as a year 3 student and sometime I see this in my course material

  • @ありすがわちひろ
    @ありすがわちひろ Рік тому

    Thanks for your helpful videos!!! QQ plot tells us whether the sample data itself is normally distributed or not, would you mind explaining how do we know whether the sample data come from a normal distribution...?

    • @jbstatistics
      @jbstatistics  Рік тому

      I'm really not sure what you are asking. The entire point of this video is normal QQ plots, which can help us assess whether the sample data appears to be approximately normal, which, in turn, can suggest whether it's reasonable to think the sample came from a population that is approximately normal. We never know for certain, as we don't know the distribution of the population unless we're simulating. But normal QQ plots can help us make a judgement call on whether the normality assumption is reasonable.

    • @ありすがわちひろ
      @ありすがわちひろ Рік тому

      Thank you so much for your reply, that was exactly what I wanted to ask. Apologise for my unclear explanation ..@@jbstatistics

  • @rahulgrgbhu
    @rahulgrgbhu 12 років тому +1

    Thank you !

  • @litieriz
    @litieriz 11 років тому

    good job... pretty clear

  • @emmanuel3929
    @emmanuel3929 8 років тому

    why is it -3 to 3 on the horizontal axis

  • @cyrusIIIII
    @cyrusIIIII 8 років тому

    Nowadays we have software that can try different types of distribution functions over our sample. In that case, why do we need Q-Q plots? I mean why not we fit the data to our normal distribution function and visualize it instead of Q-Q plot?

    • @jbstatistics
      @jbstatistics  8 років тому

      I'm not sure what you are asking. Are you asking why we don't simply plot a histogram and superimpose the appropriate normal curve? We use that type of plot sometimes, but in assessing normality it is generally felt that a normal qq plot is more informative.

    • @cyrusIIIII
      @cyrusIIIII 8 років тому

      jbstatistics Thank you very much for your response. Sorry if my writing was confusing. Statistics in not my field. Yes what I mean is have a histogram but investigate what type of function (or best fit) is appropriate for that. Not just normal. Other fits like Poisson, weibull, Gamma, logarithmic,Johnson binomial,....
      Is Q-Q plot also used for those type of distributions as well?

    • @jbstatistics
      @jbstatistics  8 років тому +1

      In this video I describe normal qq plots, which for my purposes are the most widely used qq plot. But the idea holds for other distributions as well. We plot the sample values against the appropriate quantiles of a theoretical distribution, and that distribution can be something other than the normal distribution (e.g. exponential, Weibull, gamma). It's a little messier for a theoretical distribution that is discrete, but still works in essentially the same way. (We should be able to figure out whether we're dealing with a distribution that is discrete or continuous by the nature of the problem. For example, we shouldn't be left wondering whether our sample data comes from the Poisson distribution or the normal distribution.)

    • @cyrusIIIII
      @cyrusIIIII 8 років тому

      jbstatistics Thank you for spending time and answering me. I understand now. Is there any book that very briefly gathered all the statistical methods and models and explains when and where we use them without going to mathematical parts of that? My problem is not how to calculate my problem is what model to use. For example if I have small number of samples what method I should use. what if it is discrete . what if it is continuous. what if I want to compare but I do not have normal distribution etc

  • @actionjessie
    @actionjessie 11 років тому

    How do you find the z values from a normal distribution chart? I have a problem that say x= 0.8, i=.10, z = -1.28? How do I get that from the table?

  • @teejmd91
    @teejmd91 11 років тому +1

    thanks great video

  • @MsPerva
    @MsPerva 8 років тому

    Thanks but how can we use "standard normal table"?
    This table is scary 😿

  • @lailaalmahdali
    @lailaalmahdali 11 років тому

    how did you get .1 under the curve?

  • @tsailuo3718
    @tsailuo3718 8 років тому

    great video

  • @JuanSalazar-nz6lt
    @JuanSalazar-nz6lt 8 років тому +1

    thanks a lot!

    • @jbstatistics
      @jbstatistics  8 років тому +1

      +Juan Salazar You are welcome!

  • @dstny09
    @dstny09 7 років тому +1

    pretty darn straight line XD

  • @jbstatistics
    @jbstatistics  11 років тому

    When n = 9, i/(n+1) = 0.1, 0.2, 0.3, ...

  • @cococnk388
    @cococnk388 2 роки тому

    great one

  • @mohammedbaraadamu9754
    @mohammedbaraadamu9754 10 років тому

    Thank you.

  • @GoodLuckForever-wi9kb
    @GoodLuckForever-wi9kb Рік тому

    well explained

  • @swarnabandi7670
    @swarnabandi7670 5 років тому

    Superb

  • @lailaalmahdali
    @lailaalmahdali 11 років тому

    so in i the observe value?

  • @profcoconut
    @profcoconut 9 років тому +1

    Finally!

  • @devendirandevendiran2707
    @devendirandevendiran2707 6 років тому

    Try to give presentation on outlier test in statistics. Single Grubb test, multiple grubb test etc ......