House Price Prediction in Python - Full Machine Learning Project

Поділитися
Вставка
  • Опубліковано 3 гру 2024

КОМЕНТАРІ • 240

  • @adamshenk9970
    @adamshenk9970 7 місяців тому +10

    AT APPROX 31:00 - If ISLAND is not showing I just increased my test_size = 0.2 to 0.25, or until it became large enough that it did include the ISLAND. Not sure of a real fix but this worked to get past this hurdle. Take care

  • @enes13
    @enes13 Рік тому +81

    11:47 train_data.corr(numeric_only=True)

  • @krish4659
    @krish4659 6 місяців тому +27

    a small summary : for those who are gonna start , he preprocessed the dataset a bit ( removing NaN values, adding features and splitting the catogerical value column to binary columns ) and then scaled,splitted and trained & tested on linear , random forest ..finding best estimator at last ( no explaination on what estimators are, so read forest ahead of doing this )

    • @mbulelondlovu9427
      @mbulelondlovu9427 4 місяці тому +1

      how did he change ocean proximity from object to int?

    • @rodelrahman5117
      @rodelrahman5117 3 місяці тому

      @@mbulelondlovu9427 he took one feature like

  • @aituition8336
    @aituition8336 Рік тому +28

    Mate you explain everything so concisely and keep it so interesting! Really enjoyed this video

  • @learn_techie
    @learn_techie Рік тому +12

    If you could brief explain what linear regression did ? Were all the variable taken into account and develop a slop to predict the value based on existing data? What if we removed some negatively correlated data and the response? I fail to understand what we did apart from cool images, if you can make a brief lectures on regression random decision tree cluster with some situation analysis- it would help us Thanks

  • @andyn6053
    @andyn6053 4 місяці тому +1

    Just found your channel! Im on a journey to become a data scientist and really build a solid understanding. This is a great first project to get under my belt. Having you by my side while going through the steps is awesome. I will try out doing projects all by myself also but first following along is a great start to get more comfortable and see the steps included and how u tackle it! Greetings from Sweden!

  • @softwareengineer8923
    @softwareengineer8923 6 місяців тому +2

    One of the best machine learning tutorials on UA-cam, thanks a a lot for lucid and well detailed explanation.

    • @thinhtruong9405
      @thinhtruong9405 4 місяці тому

      hi, do you have this code, can you give it to me ?

    • @softwareengineer8923
      @softwareengineer8923 4 місяці тому

      @@thinhtruong9405 I would highly recommend you to watch the video until end, search for the concepts and try to write the code yourself. That's how you can fully take benefit of this content.

    • @thinhtruong9405
      @thinhtruong9405 4 місяці тому

      @@softwareengineer8923 i see, but i have a problem so if you have this code pls give it to me :((, im from viet nam, my english is so bad

    • @thinhtruong9405
      @thinhtruong9405 4 місяці тому

      @@softwareengineer8923 i see, but i have a problem, i want this code to do something, if you have please give it to me, sry im from vietnam so my English is so bad

    • @thinhtruong9405
      @thinhtruong9405 4 місяці тому

      ​@@softwareengineer8923 i see, i have a problem so i need this code to do something, im from viet nam so my endlish is so bad :((

  • @ebek4806
    @ebek4806 Рік тому +9

    Hi. What I would recommend doing in the hyperparameter tunning phase on the RFR model. Is to use np.range() instead of a list with hard values the model has to use and which are limited to two options or three.
    Yes this might take a lot of time to run but using randomizedsearchCV would be okay as a starter then if you see the model improving you can use gridsearchcv instead.

  • @mrzfpv7871
    @mrzfpv7871 Рік тому +1

    your tutorials are the best thing i found on the internet

  • @JoachimGroth
    @JoachimGroth Рік тому +28

    Great video, thank's a lot. But I'm missing the most interesting part: How can I use the model for getting the house value for an object which isn't part of the used data?

  • @sudhanshu004
    @sudhanshu004 11 місяців тому +5

    I have two questions
    1. Why didnt you use all feature in train_data (many columns were skewed) to convert via log
    2. I didnt saw any change in histogram before and after . How did you decided that data is converted to normal distribution?

    • @rohithsrisaimukkamala
      @rohithsrisaimukkamala 7 місяців тому

      the bars should fit in normal distribution curve which generally would be in middle

  • @Kausar2nd
    @Kausar2nd Місяць тому +1

    16:48, pd.get_dummies(data['ocean_proximity'], dtype=int)

  • @IkaroSampaioDj
    @IkaroSampaioDj 11 місяців тому +1

    explained better than my instructor xD thanks man

  • @TheMisanri
    @TheMisanri 10 місяців тому +7

    The good: feature engineering, I liked the one hot encoding explanation, and how easy you made it look.
    The bad: extremely superficial explanations. E.g., min 29, “we get a score of 66, which is not too bad, but also not too good” great, thanks for the in-depth explanation as to what 66 means and how to interpret. Most of these “tutorials” are just people recording themselves writing code, like it´s a big deal. The real important piece is understanding the business problem, and interpreting results in terms everyone can understand; I can copy/paste code from a hundred different websites. Also, linear regression is not about getting a 66 or whatever score, it´s about predicting a value, in this case, house prices; how is “66” relevant to that goal??
    The ugly: speak way too fast for no reason at all. You´re making a tutorial, not speed racing.
    Thanks anyway.

  • @rogerhartje5964
    @rogerhartje5964 Рік тому +7

    ya think?
    I should have cut my losses when you made the test/train split that early, .at around 28:00 the instructions became to confused to be useful. Until then, thanks for the instructions.

    • @trusttheprocess4775
      @trusttheprocess4775 7 місяців тому +1

      Exactly lmao, i for the life of me could not understand why he would not completely preprocess the data first and then split the data

  • @victorynwokejiobi1762
    @victorynwokejiobi1762 Рік тому +3

    Guys please how was he able to copy and paste so fast @26:01min... Where he was trying to change train data to test data..?

  • @tathagataray4899
    @tathagataray4899 2 роки тому +1

    Oh my!! Just amazing!! Make more such videos. Thank you so much.

  • @christianjohnson9245
    @christianjohnson9245 Рік тому +9

    Great content, but as a Newley founded developer interested in ML I do wish you went into a bit more detial on the key features being leveraged in the walkthrough. I would not mind spending an hour or so more to fully understand the methods and functions your leveraging in this demo.
    All in all thank you for your hard work and dedication in sharing what I believe to be humans biggest development since the Industrial Revolution.
    Keep on Techin sir.

  • @amerispunk
    @amerispunk Рік тому +5

    Continuity issue apparently: did you drop the ocean_proximity column before you ran the correlation matrix? My train_data.corr() fails due to values like '

    • @MatthewXiong-gk8nz
      @MatthewXiong-gk8nz Рік тому +14

      plt.figure(figsize=(15,8))
      sns.heatmap(train_data.loc[:, train_data.columns!='ocean_proximity'].corr(), annot=True, cmap="YlGnBu")
      I used this code to ignore the column. Hopefully this will help you get through it.

    • @vrajbirje5603
      @vrajbirje5603 Рік тому +1

      @@MatthewXiong-gk8nz thanks so much buddy

  • @collinskiprop1484
    @collinskiprop1484 Рік тому +1

    Am impressed,your explanation is so smooth and i can keep tyrack and understand every step or code you input💯

  • @Xrtd62
    @Xrtd62 Рік тому

    You don't need to normalize data when dealing with linear regression, that's the main advantage of this method, it is based on coefficients, and those coeficients adjust to the order of magnitude of each variable !

  • @FrazzledMom
    @FrazzledMom 8 місяців тому

    Best tutorial I've seen.

  • @AlexDev-h4o
    @AlexDev-h4o 11 місяців тому +2

    Heatmap cannot be render while there are non-numerical values (ocean_proximity) in the train data

    • @zawichrowana
      @zawichrowana 6 місяців тому

      I have experienced the same issue - how did the author manage to render a heatmap without dropping this column?

    • @_KobbyOb
      @_KobbyOb 6 місяців тому

      Try sns.heatmap(train_data.corr(numeric_only = True), annot=True, cmap= "YlGnBu")

    • @zakariaabouhammadi9424
      @zakariaabouhammadi9424 4 місяці тому

      i hade the same issue and i resolve it by dropping the colume
      # visualize a correlation matrix with the target variable
      # dropping the "ocean_proximity" because its not numerical
      data_without_OP = train_data.drop(['ocean_proximity'], axis=1)
      plt.figure(figsize=(15, 8)) # Ajusta el tamaño de la figura si es necesario
      sns.heatmap(data_without_OP.corr(), annot=True, cmap="YlGnBu")
      plt.show()
      -------
      after that maybe you will faceeing a problem that the heatmap dosen show all the numbers its a problem of matplotlib version u using
      save ur notebook and close it then create a new blank notebook and run this code:
      !pip install matplotlib==3.7.3
      if u run it in your project it will note allow u and u r notebook will freeze bcz u using it

  • @PrajwalBs-nh4nc
    @PrajwalBs-nh4nc 6 місяців тому +1

    Thank you much for the detailed video , everything was explained very feel , i would suggest this could be the best video to start with the machine learning projects as a beginner. And personally this video helped me a lot as i am taking up my first ML project..

  • @V.Laz.
    @V.Laz. 2 роки тому +2

    Keep it up bro! Pls do more videos with predictions

  • @adamshenk9970
    @adamshenk9970 7 місяців тому

    boss so appreciated I can't even express it

  • @ndosh1man
    @ndosh1man Рік тому +1

    7:27 wouldn't you rather use data.isna().sum()? If you have a missing value in the whole row you might not catch that.

  • @mxolisishange7516
    @mxolisishange7516 2 роки тому +2

    Amazing work man

  • @DataBlenda
    @DataBlenda 5 місяців тому

    This was a great video. Just discovered your channel today. Definitely going to subscribe!

  • @muhamed_alashmnty
    @muhamed_alashmnty 6 місяців тому

    How this channel doesn't get 1M yet !!

  • @suleimanishorts6388
    @suleimanishorts6388 4 місяці тому +1

    hey, broh where is the datase of california house price, i didn't get yet here or in your githab.
    or you haven't share with us alhough you said the link of the dataset is on the description.

  • @PulakKabir
    @PulakKabir Рік тому +3

    when I ran x_test_s, I got: could not convert string to float: 'INLAND'. how to solve it?

    • @aurum18247
      @aurum18247 Рік тому +1

      same here

    • @Borolad116
      @Borolad116 Рік тому +3

      I wouldn't waste your time. This code doesn't work and he races through everything. Much better tutorials out there.

    • @sumankumarsahu9711
      @sumankumarsahu9711 Рік тому

      Bro preprocess the data properly

    • @PulakKabir
      @PulakKabir Рік тому +1

      @@sumankumarsahu9711 i followed the eaxct way he showed here

    • @evolved__ca
      @evolved__ca Рік тому

      @@PulakKabir .corr(numeric_only=True)
      Fixed the correlation portion at least

  • @vidushibamnotey6272
    @vidushibamnotey6272 4 місяці тому +2

    I am stuck at "reg.score". please resolve my error

  • @MarcVideoProduction
    @MarcVideoProduction 10 місяців тому +2

    hello, what should I do if my X_test doesn't have any value in ISLAND? I can't perfom the reg.score
    thanks for your help

  • @Pumieeee
    @Pumieeee Рік тому +6

    How did you get the .corr() method to ignore the ocean_proximity column even though it had non-numeric values in the beginning??

    • @gongxunliu5237
      @gongxunliu5237 Рік тому +4

      train_data.corr(numeric_only=True) will do

    • @fireguy9931
      @fireguy9931 Рік тому

      @@gongxunliu5237 I didn't even know that was a parameter, tysm

    • @jonathanitty5701
      @jonathanitty5701 10 місяців тому

      @@gongxunliu5237 wow I rewatched the video 10 times to understand how he was able to get past that error and am still lost... I ended up converting the ocean proximity column into an id column prior to running the model... did corr() used to automatically filter out the string columns or something in the past?

    • @morimementos
      @morimementos 10 місяців тому

      @@jonathanitty5701 i think it was either that, or the default value changed from True to False, not sure which

  • @andrijasente
    @andrijasente 9 місяців тому

    Great tutorial! One correction at 12:45 - longitude is inveresely correlated with latitude rather than the median house income.

  • @rollinas1
    @rollinas1 Рік тому +44

    For those in the comments section, never do inplace=True.

    • @skripandthes
      @skripandthes Рік тому

      why?

    • @olanrewajuatanda533
      @olanrewajuatanda533 Рік тому +1

      What should we do to substitute that?

    • @ebek4806
      @ebek4806 Рік тому

      True

    • @ebek4806
      @ebek4806 Рік тому +4

      ​@@skripandthes
      You are making changes into the dataframe you can't reverse unless you restart the whole runtime on your workspace. Like jupyter notebook.

    • @ebek4806
      @ebek4806 Рік тому +15

      ​​@@olanrewajuatanda533
      Just define a new dataframe.
      Instead of doing this:
      Df.dropna(col, axis=1, inplace=true)
      Do this:
      Df = Df.dropna(col, axis=1)
      This way you don't hard code new changes to the dataframe and you can just edit the cell and run it again to correct any mistakes.

  • @samore11
    @samore11 Рік тому

    What's the interpretation of the "score"? Is it R-squared for regression? How about for random forests? Do they compare from one model to another?

  • @bitterbob30
    @bitterbob30 2 роки тому +2

    So how do you find the working details of the model? It's great to know the 'score' is 0.8 or whatever but what parameters are used to get that 0.8? In other words, I train a model with a score of 0.8 then get some new data points (lat, long, #bedrooms, total_bedrooms, etc (all except house price)) What's the equation I use to generate an expected house value and where do I get it?
    Great video though.

    • @Ailearning879
      @Ailearning879 Рік тому

      The model/function is made by the algorithm and that cannot be inferred. All we can do is put the values parameters and get the prediction.

    • @harshans7712
      @harshans7712 Рік тому +1

      @@Ailearning879 but can you please help me where to test the model which is trained? since we only got the model's accuracy or score. And I'm a beginner in ML

  • @filipozoz6988
    @filipozoz6988 Рік тому +1

    tahts a great video, but how do i get the predicted values now? I mean i built the model and how would i get predictions?

  • @mohammadmahdimovahedfar3245
    @mohammadmahdimovahedfar3245 11 місяців тому +6

    11:50 I got an error using corr() because of non-numeric column 'ocean_proximity'. How did you do it? Did you change the code of pandas?
    Edit: I found it myself. Go to python installation path/libraries/pandas/core/frame.py
    Go to corr function definition and set numeric_only: bool = True.

  • @user-lj2qw6jo6p
    @user-lj2qw6jo6p Рік тому +1

    At 13:00 why didn't you apply np.log to 'median_income' and 'median_house_value'? They seem pretty skewed as well

  • @Haden-137
    @Haden-137 Місяць тому

    thanks for the great project!

  • @thephotomedic3254
    @thephotomedic3254 Рік тому +3

    Great video. Apart from Linear Regression and Random Forest, are there any other algorithms that might be suitable for this type of problem?

    • @Anonymous-tm7jp
      @Anonymous-tm7jp Рік тому +1

      Naive bayes, Gaussian naive bayes, KNN, Decision tree(Randomforest is collection of decision trees), gradient boosting and XGBoost.
      Try every one of them with different different parameters for each and select the best one with best set of parameters

  • @captolina
    @captolina 2 місяці тому

    wish you had also showed some graphs that we can produce once the regression is done

  • @washingtonalmeida75
    @washingtonalmeida75 2 роки тому +2

    BTW, how do you copy and paste so quickly around minute 14 when you were doing the 'log' adjustment on the train_data? Which shortcut are you using?

    • @HoloqKing
      @HoloqKing Рік тому +3

      alt + shift + down arrow key.

  • @ROBINCHANDRAPAUL
    @ROBINCHANDRAPAUL Рік тому

    Thank you for nice explanation. Keep this good work. I want to know what is the outcome of this model. What insight I got after run the model.

  • @ksix7804
    @ksix7804 9 місяців тому +2

    what if im missing a column ISLAND?

    • @adamshenk9970
      @adamshenk9970 7 місяців тому

      I found that I could increase the test_size from 0.2 to 0.25 or until it became large enough that it included the island by change. Not a real fix but works for this. Take care

  • @suryanshtomar5907
    @suryanshtomar5907 Рік тому +3

    In X test I am getting 14 col while in X train I am getting 15 cols what should I do?

  • @freebeast3790
    @freebeast3790 6 місяців тому

    Saw this as how to build project , this is my first one , let's see where this will take me - 1.

  • @ChickenPurger
    @ChickenPurger 2 роки тому +1

    Informative video, quick question why would you not want the values to be zero when taking the log of the values?

    • @TimothyMayes
      @TimothyMayes 2 роки тому +2

      Because log(0) is undefined. That is, you cannot raise a number to a power to get 0.

  • @marawanmyoussef
    @marawanmyoussef Рік тому +1

    11:45 use the test_data.corr(numeric_only=True) instead as this will return an error if you do so. I do not understand how did you not get an error?
    I got this and had to apply the function above to solve it " ValueError: could not convert string to float: 'NEAR OCEAN'"

    • @marawanmyoussef
      @marawanmyoussef Рік тому

      16:57 Second Problem I ran into if anybody can help, pd.get_dummies(train_data.ocean_proximity) retuns True & False instead of 1&0 s

    • @Austrain.Painter
      @Austrain.Painter Рік тому

      ​@@marawanmyoussefsame here 😢

    • @Austrain.Painter
      @Austrain.Painter Рік тому

      This problem can be solved by chatgpt but later it creates a problem 🥲

    • @neelambikafatakal7533
      @neelambikafatakal7533 Рік тому

      I guess you mean by train_data.corr(numeric_only=True) because test isn't defined yet correct me if I'm wrong

    • @Your_Friend259
      @Your_Friend259 9 місяців тому +1

      thank you so much

  • @michaelg9359
    @michaelg9359 9 місяців тому +2

    my ISLAND column gets deleted when creating test_data - any way to fix this?

  • @sinan8036
    @sinan8036 Рік тому +1

    At minute 28:40 line "31" I typed the same "reg.score(X_test, y_test)" but it does'nt work. The ValueError is "Input X contains NaN."
    What I did wrong? Can anyone help me? I would like to complete this project. Thank you

    • @samarthamera
      @samarthamera Рік тому

      run all cells again

    • @imansaid2321
      @imansaid2321 9 місяців тому

      @@samarthamera doesn't work

    • @noraalharik9488
      @noraalharik9488 8 місяців тому

      @@imansaid2321did you figure it out? It’s not working with me

  • @irontv171
    @irontv171 10 місяців тому

    thank you !!!
    it was really helpful

  • @sauravsharma7706
    @sauravsharma7706 11 місяців тому

    Every thing was great but the fact that ive to debugg my entire code because we split earlier and had to pre process the test data again was so painfull speacially in jupyter lab

  • @ДаниилДуханин-ш7ц
    @ДаниилДуханин-ш7ц 2 роки тому

    Thanks for the vid! First day on ur chanel really happy found u!
    And it seems you use a sort of autocompite for typing when on terminal? or ur typing is just soo fast..

  • @shivasharma1984
    @shivasharma1984 4 місяці тому +1

    sir i am getting -1.25 score!
    what to do now!

  • @vudumulanagasairahul1298
    @vudumulanagasairahul1298 Рік тому +1

    where can i get total code

  • @retrogamer947
    @retrogamer947 10 місяців тому

    Timestamp : 20:00

  • @franknaso8700
    @franknaso8700 9 днів тому

    Grat job!

  • @gemon39
    @gemon39 Рік тому

    Hi. Very well explained! thank you.

  • @vishwanathsonu7613
    @vishwanathsonu7613 2 роки тому +2

    I can't get over you sir
    You are a legend

  • @Anonymous-tm7jp
    @Anonymous-tm7jp Рік тому +2

    Randomforest algo takes features at random so if we literally change nothing and fit the model again and again we can see the scores changing(+-2%).
    Also only one variable median income was strongly related with target(bcoz it had correlation>0.5).
    If many variables would have been above 0.5 then we might had seen drastic changes during gridsearch min_features

  • @varuncharan9109
    @varuncharan9109 6 місяців тому

    why you said this is classification at 39:39 when it is regression problem ?

  • @washingtonalmeida75
    @washingtonalmeida75 2 роки тому

    🤯 Great video.

  • @dioutoroo
    @dioutoroo Місяць тому

    Hi, how did you join the train data and still get the correct values on the median_house_value. I got NaN here. thanks!

  • @krishj8011
    @krishj8011 2 місяці тому

    Excellent tutorial...

  • @PatientInAffliction
    @PatientInAffliction 8 місяців тому

    is there a link to the pyhton notebook?

  • @sanaahmed1860
    @sanaahmed1860 8 місяців тому

    where can i get the notebook? i tried searching your gihub repository but dont see any related to house price prediction. Can you please share the notebook?

  • @sosohhu
    @sosohhu Рік тому

    why do we need normal distribution in total-rooms, population...?

  • @rishabhmishra7192
    @rishabhmishra7192 Рік тому

    at minute 16:53 I am facing this issue were it suppose to provide the output with binary values instead it is displaying bool values is there anyway I can covert the values from boolean to binary?

    • @georgeharris6151
      @georgeharris6151 Рік тому

      I'm having the same issue is there any fix?

    • @Vedanti_koli
      @Vedanti_koli Рік тому +5

      df =
      pd.get_dummies(train_data.ocean_proximity)
      print(df)
      df=df.replace({True:1, False:0})
      print(df)

  • @pratikmane7465
    @pratikmane7465 Рік тому

    Explained everything perfectly, Your channel is going to be my go to channel, to learn data science!!!

  • @VedaVoyager
    @VedaVoyager Рік тому

    Hey bro! Can you please guide me in number prediction in a specific position by reading existing excel data!? I wanted to generate 6 numbers with this logic

  • @umamihsanilu.2149
    @umamihsanilu.2149 6 місяців тому

    May I ask why the longitude and longitude are not applied encoding?

  • @shashidharvoorugonda7930
    @shashidharvoorugonda7930 9 місяців тому

    Can you add custom code so that model predict saleprice when input code is given

  • @Тима-щ2ю
    @Тима-щ2ю 10 місяців тому

    How did you get 0.66 score? I made similar data transformations and got only 0.25 score and 0.78 MSE

  • @kensh9000
    @kensh9000 Рік тому

    Hi! How did you get those Vim bindings in jupyter?

  • @alimuhammadnathani7859
    @alimuhammadnathani7859 8 місяців тому

    Is it just me who's getting the error "Input contains NaN, infinity or a value too large for dtype('float64')"? For both linear as well as random forest

  • @Harirtaylorversion
    @Harirtaylorversion 8 місяців тому

    when you define the X_test_s ?? when i want to scaling i should use the X_test_s AS your code but i gets error i have not X_test_s

  • @azizurrehman8328
    @azizurrehman8328 Рік тому +1

    no matter what i do i cant get the join method

  • @EshitaGarg
    @EshitaGarg 4 місяці тому

    Hi NeuralNine. I am having doubt in executing the corr() function. How can I move forward?

    • @ShhFlow
      @ShhFlow Місяць тому

      try to put as corr (numeric_only = True)

  • @chiraggupta7187
    @chiraggupta7187 5 місяців тому

    sorry to say but in my code "ocean proximity"is not shown.

  • @sivakrishanayadav9825
    @sivakrishanayadav9825 2 роки тому

    how to get same dataset? where?

  • @gustavoq5813
    @gustavoq5813 Місяць тому

    So. where exactly is the ¨machine learning¨ part? All I saw were regressions.

    • @NeuralNine
      @NeuralNine  25 днів тому

      Regression IS machine learning. When you predict categories or classes it is called classification. When you predict numeric values, we call this regression. Even if you use complex neural networks it is still regression. But not necessarily linear regression, which might be what you are thinking about. Random Forests are also non-linear.

  • @ivanquncu2292
    @ivanquncu2292 5 місяців тому

    hello there, can i ask for your help to make data preprocessing for a specific dataset. it have 53884 rows and 8 columns..

  • @princesamuel100
    @princesamuel100 Рік тому

    Man! Your computer runs effortlessly😅 It's soo smooth...
    What are the specs? 😅
    I need to get one like that.😂

  • @7ucky7vn37
    @7ucky7vn37 Рік тому

    great video. and o my wat is the intro music. im a music artist and would love to hear the full thing.

  • @nelsonberm3910
    @nelsonberm3910 5 місяців тому

    Thanks for the vid

  • @tofaratifolayan
    @tofaratifolayan Рік тому +2

    I don't have the ISLAND column when i do the X_test join y_test and so i get errors. how do i fix that?

    • @RelaMuse
      @RelaMuse Рік тому

      Also having this issue

    • @andyn6053
      @andyn6053 4 місяці тому

      from sklearn.model_selection import StratifiedShuffleSplit
      stratify_col = df['ocean_proximity']
      stratified_split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)
      for train_index, test_index in stratified_split.split(X, stratify_col):
      X_train, X_test = X.iloc[train_index], X.iloc[test_index]
      y_train, y_test = y.iloc[train_index], y.iloc[test_index]

  • @ferocious_lad2031
    @ferocious_lad2031 7 місяців тому

    As of this writing, I am not able to find the exact data set (.csv file ) for Californian house prices. If some one can provide me with the link for the same one used in this video this will be greatly appreciated!

  • @yasoou
    @yasoou Рік тому

    2330 """
    ValueError: columns overlap but no suffix specified: Index(['longitude', 'latitude', 'housing_median_age', 'total_rooms',
    'total_bedrooms', 'population', 'households', 'median_income',
    'ocean_proximity'],
    dtype='object')
    i got this error when i tried to join the train data ,that goses like this ( train_data= x_train.join(y_train)). now how do i solve this.

    • @aituition8336
      @aituition8336 Рік тому

      There should be no overlap, your X data are your 'features' - the attributes that your model uses to make a prediction of y 'labels'. In this scenario, the features are things like long, lat, bedrooms, population etc.. the label is the median house price because that is the value you want to predict.
      You have to drop the median house prices column from the X data frame and assign that column to the y variable. Then once you join X and y, you shouldn't have any overlaps

  • @alisarena8951
    @alisarena8951 Рік тому

    Can you upload the data path over here

  • @yusufcan1304
    @yusufcan1304 Рік тому

    it was great thank you a lot bro.

  • @clemenza4
    @clemenza4 Рік тому

    Nice, ty

  • @thorfast_hawks_191
    @thorfast_hawks_191 Рік тому +1

    plt.figure(figsize=(15,8))
    sns.scatterplot(x='latitude', y='longitude', df = train_df, hue='median_house_value', palette='coolwarm')
    this line of code is note working. its showing ValueError: Could not interpret value `latitude` for parameter `x`
    how can i fix this?

  • @gilbertopoku8944
    @gilbertopoku8944 5 місяців тому

    i got a value error when I used .corr() on my train data. something along the lines of not being able to convert the str into int. so I am unable to make a heat map. I am an absolute beginner so can someone please help me out. anything will be well appreciated

  • @shriyapallam7575
    @shriyapallam7575 Рік тому

    What to do if I get notified error

  • @SameerMohanty-m1u
    @SameerMohanty-m1u Рік тому

    where is the source code of this project I get an some error

  • @dewanshpillare8459
    @dewanshpillare8459 Рік тому

    I don't know, but errors are generated in my code, though I write exactly same thing as you do . And I have no idea what to do. 😅