Basis and Dimension for Skew Symmetric Matrices. Precise as well as Shortcut solution.

Поділитися
Вставка
  • Опубліковано 19 лис 2024

КОМЕНТАРІ • 24

  • @AnmolKumar-cg5is
    @AnmolKumar-cg5is Рік тому +1

    Thank you sir for explaining in such easy manner

  • @ektakesharwani8115
    @ektakesharwani8115 2 роки тому +2

    Thanks a lot for providing us this very helpful video

  • @samarthasamartha4778
    @samarthasamartha4778 9 місяців тому +1

    Keep rocking in your teaching sir❤

  • @KARTIKGUPTA-f8r
    @KARTIKGUPTA-f8r 10 місяців тому +1

    It is really helpful

    • @DrMathaholic
      @DrMathaholic  10 місяців тому +1

      Happy to hear that... thank you 😊

  • @dansantner
    @dansantner 2 роки тому +1

    Excellent video. Thank you.

  • @balaseshank7458
    @balaseshank7458 Рік тому +1

    Superb..!!

  • @onkarkamble2280
    @onkarkamble2280 Рік тому +1

    Great sir 👍

  • @ManavKoul
    @ManavKoul 3 роки тому +1

    Amazing, thank you!

  • @au.adaora
    @au.adaora Рік тому +1

    Thank you

  • @Rohitkryadav-bc4gr
    @Rohitkryadav-bc4gr 2 роки тому +1

    Implies dim of skew symmetric Matrix with trace 0 is same (as diagonal elements of skew symmetric matrix is 0)

  • @CSIRUGCNETMATHS
    @CSIRUGCNETMATHS 2 роки тому +1

    The diagonal entries is either Zero OR purely imaginary what about your imaginary part ?

    • @DrMathaholic
      @DrMathaholic  2 роки тому +1

      Sorry but I didn't get your question. Can you pls elaborate?

    • @CSIRUGCNETMATHS
      @CSIRUGCNETMATHS 2 роки тому +1

      @@DrMathaholic if you say skew symmtric Matrix over real field then you are right but if you say skew symmetric matrics over Complex field then your answer is wrong.

    • @DrMathaholic
      @DrMathaholic  2 роки тому +1

      @@CSIRUGCNETMATHS yes yes ..definitely..
      I have considered over real numbers..