Cohort Analysis with Python from Scratch | Easy Code

Поділитися
Вставка
  • Опубліковано 2 лис 2024

КОМЕНТАРІ • 33

  • @casmiranyaegbu9945
    @casmiranyaegbu9945 3 місяці тому

    This tutoria was quite grannular. I now have a better understanding of Cohort Analysis. Thank you

    • @absentdata
      @absentdata  3 місяці тому

      Thank you for watching

  • @alexkim7270
    @alexkim7270 Рік тому

    Dear good sir I loved this pace so much. It is much easier to understand everything from top to bottom than asking ChatGPT to spit the code out (was rushing for time hence not much time to digest everything given).

  • @jessicahaire4024
    @jessicahaire4024 Рік тому

    Awesome code along session -- pace was great! Thanks for explaining all the steps and subtleties, and for pointing us to the dataset on the UCI repository.

    • @absentdata
      @absentdata  Рік тому

      You're very welcome! Yes, I tried to keep the pace slow.

  • @ju-lyndav7087
    @ju-lyndav7087 Рік тому

    Thank you so much. This has really helped me understand things.

  • @samfreeman8328
    @samfreeman8328 Рік тому

    Thanks a lot for your heat map tutorial!

  • @SanthoshKumar-kx1xh
    @SanthoshKumar-kx1xh 2 роки тому

    Beautifully explained.

    • @absentdata
      @absentdata  2 роки тому

      Thanks for the great compliment. Share the vid if you think if will help someone

  • @NamPham15019
    @NamPham15019 Рік тому

    Amazing video, I am a fan of your contents. Would it be possible if you can have some of the intermediate and advanced videos about market segments, revenue and cohort, and predictive analysis please. Truly appreciate it

  • @youyou8803
    @youyou8803 2 роки тому

    Amazing channel, would love to watch more videos like this. :)

  • @ronenTheBarbarian
    @ronenTheBarbarian 2 роки тому

    Thanks a lot for this! Really simple code and great explanations throughout. Keep up the great content fellow data person.

  • @saya5664
    @saya5664 2 роки тому

    Great video! thank you and looking forward to more videos like this too :)

  • @leonardofreitas8900
    @leonardofreitas8900 2 роки тому

    Could you please provide a more detailed explanation of the outlier displayed at the end. Could it be caused by a problem with the data? Thank you for the video! Great content!

  • @followrajah7743
    @followrajah7743 2 місяці тому

    Thank you!

  • @ahmadel-ashery8860
    @ahmadel-ashery8860 2 роки тому

    Amazing Thank you

  • @djaadiabdellah9081
    @djaadiabdellah9081 2 роки тому

    Great video

  • @FindingyourKey
    @FindingyourKey 2 роки тому

    Thanks so much for this great video. I had a question about Invoice date. In my use case, We have a purchase date of when the client bought our monthly subscription and cancel date for when they cancelled it. Can I swap Invoice month to cancellation month and use the same method?

    • @absentdata
      @absentdata  2 роки тому

      If I am understanding the scenario correctly. Then yes you can.

  • @ohreinaldo1990
    @ohreinaldo1990 2 роки тому

    Thanks for this awesome video and explanation! Just a question... would the same rational work for a dataframe with a single customer ID per month (1 customerID per row, per month) and two columns (activation date / exit date)? Pls take into consideration that null exit date means the customer is still active... The idea is basically the same, which is check for how long my customers are active. Thank you in advance!

    • @absentdata
      @absentdata  2 роки тому

      Hi thanks for the comment. Yes you could do that. However, evaluating how a customer is still active would only require grouping customer with a null exit date and comparing the start date to the current date.

  • @akwamfoneventus6124
    @akwamfoneventus6124 Рік тому

    Thank you for this tutorial, this has been most helpful.
    But I have some things I would love to change
    - How do I make the values in 100s show as whole numbers rather than the "1.2e+02" format ?
    - How do I move the cohort index to the top of the chart instead of te botom on the visuals
    - How can I make the plot interactive such that it will show the customerid that made up a certain cell in the cohorts ?
    Thank you

    • @akwamfoneventus6124
      @akwamfoneventus6124 Рік тому

      You can get rid of the scientific notation in the heatmap specifying fmt='.2f' or fmt='.0f'

  • @AffairsBibes
    @AffairsBibes 9 місяців тому

    Thanks ❤❤

  • @mohamed.montaser
    @mohamed.montaser Рік тому

    why you didn't transform cohort_data to dataframe?

  • @giandenorte
    @giandenorte 2 роки тому

    First!