World's Smallest Cyclocopter (Texas A&M University)

Поділитися
Вставка
  • Опубліковано 8 вер 2024
  • The world’s smallest cycloidal-based rotorcraft, or cyclocopter, has been recently designed, built and test flown successfully at Texas A&M University, Advanced Vertical Flight Laboratory under the direction of Dr. Moble Benedict, with graduate students Carl Runco and David Coleman. Weighing only 29 grams, it utilizes the latest advances in microelectronics technology and carbon fiber composite construction, as well as extensive experimental data for design and optimization.
    The cyclorotor, unlike traditional helicopter rotors, utilizes a horizontal axis of rotation with the blade span parallel to this axis. With the blades cyclically pitched such that each blade has a positive geometric angle of attack at the top and bottom of the circular trajectory, a net thrust is produced. The mechanism that generates this pitching motion allows complete 360 degree thrust vectoring capabilities, one major advantage of the cyclocopter which allows the vehicle to fly in flight regimes unsuitable for traditional helicopters and multi-copters. Additionally, recent studies have shown that a cyclorotor can achieve higher hover efficiency than a conventional rotor at smaller scales, because of uniform lift distribution and favorable unsteady aerodynamic environment along the blade span. For these reasons, the cyclocopter is advantageous for applications such as search and rescue operations and indoor to outdoor surveillance and reconnaissance in which high hover efficiency, agility and gust-tolerance are needed.
    The current vehicle prototype utilizes cantilevered rotor blades with a semi-elliptical planform shape, resulting in a novel, lightweight cyclorotor design. To minimize blade bending, a unique, high strength-to-weight ratio unidirectional carbon-fiber based structural design is employed, and the blades are fabricated using a specialized manufacturing process which ensures consistency and lightweight results (0.12 grams each). During flight, roll is controlled by varying the differential rotational speed of the main cyclorotors, which generates a lift imbalance about the longitudinal axis of the vehicle. Pitch is controlled by changing the tail rotor RPM, which, due to the variation in vertical thrust, creates a moment about the pitching axis. Finally, yaw is controlled by tilting one cyclorotor thrust vector forward and the other backward. Additionally, both can be tilted in the same direction for forward or backward translation. Therefore, unlike a traditional hybrid aircraft such as a tilt-rotor, a cyclocopter can transition from hover to high-speed forward flight without any configuration change due to its thrust vectoring capability. A closed-loop proportional-derivative control strategy is implemented on a custom-built 1.3 gram autopilot which senses the vehicle motion and corrects the motor RPMs and tilts the thrust vectors accordingly. By careful tuning of feedback gains the vehicle has demonstrated stable hovering flight.
    More information could be obtained from our 2016 AIAA SciTech paper: arc.aiaa.org/do...

КОМЕНТАРІ • 16

  • @NOBOX7
    @NOBOX7 2 роки тому +1

    This would make fantastic tug boat rotors , not kidding , try it out , not only way more efficient and powerful but maneuverability is off the charts , you would need 2 or 4 rotors for the tug boat but only one of the rotors , not the dually like on this plane

    • @alienbeef0421
      @alienbeef0421 2 роки тому

      It is a technology trickled down from marine engineering, look up the Voith-Schneider propeller

  • @BHARGAV_GAJJAR
    @BHARGAV_GAJJAR 2 роки тому

    Looks like a Good job on the landing gear

  • @Freedom2x462
    @Freedom2x462 2 роки тому

    Genious design!

  • @kapitanhedwig4608
    @kapitanhedwig4608 Місяць тому

    That is so messed up! on which planet is this projected to move

  • @louisgag
    @louisgag 7 років тому

    Thanks for sharing this video Moble, I wish I would produce cyclocopters like you do !

  • @beefsand419
    @beefsand419 2 роки тому

    Epic

  • @aidanwelly
    @aidanwelly 2 роки тому

    Wow, sangat menarik.👍👍🥰🥰

  • @anthonydoyle3613
    @anthonydoyle3613 7 років тому

    What's the music used in this video? Thanks.

  • @charlie99210
    @charlie99210 7 років тому

    Didn't DaVinci play with this idea in a few of his drawings? I know he did an airscrew style, and other flying machines.

  • @vrillain
    @vrillain 6 років тому

    How to make it it is very fantastic

  • @fifaham
    @fifaham 2 роки тому

    Very nice - you need to add stabilization circuit (PID Control) via hardware and software - if you need help let me know.

    • @jaqummh
      @jaqummh 2 роки тому +1

      Im pretty sure it allready has on! Thank you!

    • @fifaham
      @fifaham 2 роки тому +1

      @@jaqummh I am happy it does. Maybe it was designed to dance that way or I maybe wrong.