Pulse Tube Cryocooler - Part 2 (-75C)

Поділитися
Вставка
  • Опубліковано 26 гру 2022
  • Part 1:
    • Pulse Tube Cryocooler ...
    This is the second part of my video series on attempting to build a Pulse Tube cryocooler. I managed to make significant progress by removing the linear motor and using a conventional rotary motor with a large gear reduction ratio and a flywheel to produce the larger forces needed for higher compression ratios.
    For pistons, I used pneumatic actuators. I evaluated a 25mm bore and a 40mm bore piston, both with a 50mm stroke. Pneumatic actuators have more friction than conventional pistons due to their rubber lip seals, but theoretically have zero blowby, so they hold pressure, which makes them more effective for low frequency applications.
    Here are some specifications for the cooler:
    Pipe diameter: 18mm
    Regenerator Length: 30mm
    Regenerator Material: Fine steel wool
    Pulse Tube Length: 100mm
    Flow resistance source: 1/8 NPT needle valve
    Inertance Tube Length: 10' (~3m)
    Inertance Tube Diameter: 4.4mm
    Buffer Tank Volume: 2L
    Piston Swept volume (25mm): 23CC
    Piston Swept volume (40mm): 57CC
    Compression Ratio (25mm): 1.4
    Compression Ratio (40mm): 2.0
    Maximum Frequency: 15 Hz
    Motor KV: 750
    Motor Voltage: 16V
    Motor reduction ratio: 5:1
    Flywheel moment of Inertia: 0.012 kgm^2
    Maximum recorded temperature drop below ambient: -91C
    Lowest recorded temperature: -75C
    I think with some more optimization, this system can probably reach -100C, although without helium or hydrogen as a working fluid, I think it's unlikely that I'll reach cold enough temperatures to liquefy oxygen/nitrogen.
    In part 3 of this video, I'll do more investigation into hot-end heat exchanger design, regenerator design, and the effect of increasing the power density of the system by pressurizing it. I'll also be comparing the pulse tube performance to a similar spec alpha stirling cooler.
    Links for parts:
    Motor:
    www.amazon.com/dp/B084QCLTM1?...
    25: and 40mm pistons:
    www.amazon.com/gp/product/B08...
    www.amazon.com/dp/B08YYQZ5CQ?...
    Music Used:
    Kevin MacLeod - Lobby Time
    Kevin MacLeod - Groove Groove

КОМЕНТАРІ • 651

  • @HyperspacePirate
    @HyperspacePirate  Рік тому +251

    I've read through the comments and thought I'd address a few of them:
    -The 40mm piston is probably not optimally matched to the pulse tube geometry,
    since i optimized it for higher frequencies on the 25mm piston
    -For part 3 or 4 i'll probably try using Hydrogen as a working gas. It has a lower
    specific heat ratio than helium, but the highest thermal conductivity of any
    gas, so I should see an increase in performance as long as all the components are
    sealed well enough to avoid leakage
    -For part 3 I'll be looking at heat exchangers with multiple heat pipes and
    water cooling, as well as single tubes packed with copper wool.
    -I do intend to evaluate a segmented regenerator with polymer "heat breaks"
    to slow down axial conduction losses by breaking the continuity of the metal
    mesh
    -For higher pressures and lower temperatures, I'll be replacing the PVC
    with stainless steel to avoid explosion hazards.
    -The ESC has flyback diodes across the H-bridge MOSFETs, so any back-current
    from the flywheel after motor shutoff should be dissipated through those.
    -Multiple stages might be neccesary to reach LN2 temperatures with a DIY setup.
    Pulse tubes can be staged by connecting a much smaller pulse tube to the output
    of the compressor's aftercooler and thermally anchoring the second heat exchanger
    to the cold end of the first stage. Pulse tubes used for liquefying helium/hydrogen
    typically have 3 or 4 of these stages and can reach single-digit kelvin temperatures

    • @Axman6
      @Axman6 Рік тому +2

      I’d be really interested to see more tests with increasing the regenerator diameter so the gas flowing over the steel wool is moving at a slower velocity; if your idea about the velocity of the air getting too high is right this should help… maybe 🙃

    • @BirdbrainEngineer
      @BirdbrainEngineer Рік тому +7

      - Hydrogen is incredibly difficult to keep sealed; just look at the troubles and delays with SLS
      - I wouldn't be so sure that you can use water cooling... wouldn't the heat exchanger itself not get cold enough at one point to freeze water inside the heat exchanger? Then you have an insulator in the pipes instead!

    • @marttileppanen
      @marttileppanen Рік тому +6

      Could you add a new stage just by eg. adding a Peltier element (with a heat sink) to forcibly cool down the hot end and thus increasing the temperature difference? They're not terribly efficient, but can move tens of watts of heat without using moving parts?

    • @vladovrhovsek
      @vladovrhovsek Рік тому +2

      You should ISOLATE ALL around the precision valve and after on the right, all the way to coper pipe and reservoar. When air from the resevoar expands through valve, it cools off, and it is good, that it is cool as posible, before expands.

    • @WetDoggo
      @WetDoggo Рік тому

      is the volume really really low or what?

  • @Aeogenia
    @Aeogenia Рік тому +596

    This is by far, the most interesting video project recommended by UA-cam in a long time. Great explanation and accurate presentation. Amazing work, keep up the good work. Hope to see -200C in a while :)

    • @drezster
      @drezster Рік тому +7

      I second that. Looking forward to some liquid nitrogen in the near future :)

    • @pradipda3171
      @pradipda3171 Рік тому +5

      So True otherwise youtube only promotes garbage and clickbait

    • @xmysef4920
      @xmysef4920 Рік тому +1

      Gotta agree with ya!

    • @jtjames79
      @jtjames79 Рік тому +5

      I agree this is highly relevant to my interests.
      I've been wanting to test out instead of using heat to evaporate water from my 3D printer filament, sublimate it with cold instead.
      Freeze drying machines are ridiculously expensive.
      I could do so much science with this!

    • @fickgooglefickthem6884
      @fickgooglefickthem6884 Рік тому +1

      In case You don't know: watch the "star in a jar" project by the plasma channel. Just a recommendation

  • @dr.med.janschiefer7163
    @dr.med.janschiefer7163 Рік тому +176

    This is fascinating. The first DIY cryocooler that works sufficiently This is the first DIY project reaching really low temperatures without complicated multistage refrigerant stages.

    • @AttilaBlade
      @AttilaBlade Рік тому +6

      :) Not the first that works well, but with a really cool presentation!

  • @VarkaTheDragon
    @VarkaTheDragon Рік тому +121

    That's some seriously impressive data analysis and scientific method for a simple prototype! Great work - subscribed!

    • @Stoneman06660
      @Stoneman06660 Рік тому +5

      Yeah, couldn't agree more. Often that sort of info is missed during YT content which I assume is to make it palatable to a wider audience who just want to see stuff built, tested, and completed. (Or blow up; intentionally or otherwise).

  • @trustthedogsheneverlies644
    @trustthedogsheneverlies644 Рік тому +24

    When cleaning wire wool up wrap the magnet in a rag so you can separate the captured steel wool from the magnet to dispose.
    Great to see an explanation of why gas-gas heat exchangers are hard to design!

    • @maqabayker
      @maqabayker Рік тому +2

      Gas-to-gas heat exchangers are much harder than the other because overall heat transfer coefficient is substantially low that you need very large equipment for that. Because of that, the diameter and length of the heat exchanger gets larger and larger. If you intend to do gas to liquid heat exchanger, it is far worse than it seems, because the liquid will have higher conductivity while gas will have very low conductivity which makes a lot of problems on the design process. Other than this, the pressure drop across the heat exchanger will be very high for gas effluent (because of high velocities) depending on what type of heat exchanger and which side you intend to have liquid flowing (if it is shell and tube heat exchanger of course)
      In my process design course, I had a lot of problems with superheated vapor stream and it was a nightmare to get the correct design values.

    • @kitemanmusic
      @kitemanmusic Рік тому

      Great suggestion. Could use a vacuum cleaner or a small brush.

    • @mrf4549
      @mrf4549 Рік тому

      Instead of a rag you can also use a sandwich bag but the rag works well too.

  • @origamerking6927
    @origamerking6927 Рік тому +22

    this is incredible
    you are the only youtuber that shows how to make a cryocooler
    keep this up

  • @kellenfoore5182
    @kellenfoore5182 Рік тому +30

    This is the best thing that UA-cam has sent my way in a LONG time. Thank you so much for the amazingly well made video, and I can't wait for the next part!

  • @odw32
    @odw32 Рік тому +18

    The clarity & detail in your explanations is absolutely amazing, the collected data and visualizations really help to make this more intuitive. You're a great teacher!

  • @hectorgarcia1326
    @hectorgarcia1326 5 місяців тому +1

    I love how far diy projects have come since the early days of UA-cam a decade ago which were 90% LED projects keep up the good work

  • @IsiahShelton-tt9zd
    @IsiahShelton-tt9zd 2 місяці тому

    I was kind of getting board of all the math then... "my homemade CNC Mill"! I was instantly paying 100% attention.
    Great Video Man!

  • @sachitdaniel6688
    @sachitdaniel6688 Рік тому +11

    The use of the scaling exponents to predict the behaviour, along with the brute force empirical parameter sweep was beautiful ❤️
    I wanted to click like so many times in this video but sadly I am limited to just one.
    This is so beautiful.

  • @dannyneumann4547
    @dannyneumann4547 Рік тому +7

    Love this series, seriously. I feel like I understand now how “real” engineering is done. Keep the videos coming!

  • @krystianstolarczyk4544
    @krystianstolarczyk4544 Рік тому +6

    Once you can turn air to liquid i know this channel is gonna blow up. Great editing, the graphs are sweet. I'm getting ready to follow along.

  • @TopiasKorpiTK
    @TopiasKorpiTK Рік тому +55

    You could try to improve regenerator performance by using several "sub-regenerators" to prevent heat conduction axially. In practice, instead of making one blob of steel wool, make several and stack them inside the tube.

    • @mitchellstrobbe7779
      @mitchellstrobbe7779 Рік тому +1

      I wonder if adding an insulator material or air gap between them would help as well

    • @TopiasKorpiTK
      @TopiasKorpiTK Рік тому +1

      @@mitchellstrobbe7779 What I've read, having an air gap or insulator material between sub-regenerators does not improve the perfomance much at all. Axial discontinuity in the regenerator should be enough to prevent axial conduction.

    • @kreynolds1123
      @kreynolds1123 Рік тому +1

      Try a stack of stainless steel filter mesh. Not only does stainless steel have a much lower thermal conductivity than the steel in steel wool, but heat has to flow laterally along the before reaching a contact point where it can flow axially to the next screen. The second part contrast with the random orientations allowing comparitivly faster axial heat conduction with steel wool.

  • @un65tube
    @un65tube Рік тому +6

    I more or less stumbled by accident over your videos, but the subject is very fascinating and they are one of the best youtube videos I ever saw up to now that combine practical use with scientific background. Wish my scool lessons in physics or thermodynamic would have been so interesting! As already said by others, you would be a very good teacher! Many greetings from Germany and all the best for upcoming 2023! 😃

  • @rorypenstock1763
    @rorypenstock1763 Рік тому +2

    I just want to say that in terms of video produciton, you've done an excellent job in the treatment of the calculations and design considerations. You've somehow kept your explanations concise without glossing over anything big, and made it accessible without dumbing it down.
    Your channel is the best one UA-cam has recommended me in a long time.

  • @NiphanosTheLost
    @NiphanosTheLost 11 місяців тому

    I love the intelligent and thoughtful community you've fostered, I scroll down and all I see is intelligent and thoughtful comments instead of my first instinct which was laughing at the robo pubes at 8:45

  • @davidmclean5067
    @davidmclean5067 Рік тому +4

    This is excellent! Having scratch-built several high temperature Stirling engines, I very much appreciate your approach to this.

    • @mikeconnery4652
      @mikeconnery4652 Рік тому

      Were you thinking of using the waste heat. Also, would a sterling engine make a good power source on the moon?

  • @ThePowerofElectricity
    @ThePowerofElectricity Місяць тому

    I think you just gave me an idea to rescue my old GM-Cryo system...
    Great video, excited to see where your journey will continue to go!

  • @graealex
    @graealex Рік тому +11

    Simplest way to give these 3D printed parts better performance and tolerances is to press in some bushings, typically made from brass. It works similar to putting in inserts, heating them up and then just pushing. Bushings are very often the better solution compared to roller or ball bearings anyway.

    • @dustinbrueggemann1875
      @dustinbrueggemann1875 Рік тому +4

      Bushings are only really significantly better if you're worried about contaminant intrusions into the race or concentricity. For a continuous low speed, ambient temperature, high torque system in an open and dry environment, ball bearings are pretty much perfect. A bushing would need much more careful tolerances for the shafts and alignment. If he were working with hydrogen gas you might have an argument though.

    • @graealex
      @graealex Рік тому +1

      @@dustinbrueggemann1875 Yes yes, high torque like here lol. It's low-torque, low-load, low-speed, and very limited operating hours, so the main argument for bushings is the fact that they're low profile. Which I guess is the reason he didn't install ball bearings in the first iteration of the rod, as there wasn't enough space.

  • @LexYeen
    @LexYeen Рік тому

    This is the kind of garage science everyone should know is possible.

  • @timothysands5537
    @timothysands5537 Рік тому +2

    Your channel is a goldmine for us mechanical engineering students. Thank you for the detailed content!

  • @EricGardnerTX
    @EricGardnerTX Рік тому

    So, I don't comment often, but you are fantastic. This is such a great example of scientific and data driven innovation. Finding ways to isolate, measure and iterate individual components is the name of the game, and you have done it wonderfully.

  • @vernonzehr
    @vernonzehr Рік тому

    I recently signed up for Paramount+ and was watching "The Love Boat" before I clicked on this video. My GOD, the vast difference in the intelligent content between these two programs is astounding. I believe they are fighting for control of my brain (it didn't matter so much back in the 70s and 80s). I'm not sure if this could cause some sort of brain damage. Like a kind of "content intelligence quotient whiplash".

  • @GautamSharmaCA
    @GautamSharmaCA 6 місяців тому

    Bravo! Looking at your channel - all the videos you have made - you should have at least a few million followers! You indeed, are one of the few.

  • @thonkingintensifies9510
    @thonkingintensifies9510 Рік тому +1

    Brother what the hell did you study to all know all this, not only physics but your grasp on electricity is also astonishing, keep making videos love this stuff

  • @amannarwal7032
    @amannarwal7032 Рік тому

    Truly remarkable in my whole life as an engineer to this date it's the first time I realised how difficult it is to build something when you are dealing with multiple variables

  • @drfoop
    @drfoop Рік тому

    That I could understand this using memories of high school physics from the distant past speaks volumes for your presentation skills. The UA-cam recommendation engine has a success for once. Excellent video.

  • @AttilaBlade
    @AttilaBlade Рік тому +23

    It was a great presentation again! Congratulation! DELTA EC program from Penn State University could help a lot to you in the next steps. There is possible variations of heat engines and heat pumps from simple alpha Stirling to pulse tube via thermoacoustics. The resonant frequency of the system is one of the main thing to increase the performance with a better performance of HX & regenerator also with changed basic parameters. Try to abstract from the pressure ratio a bit, because ThermoAcoustic systems could rich this temperature range easily with low compression ratio, typically under 10%. These materials that you used are enough good for a trial run where you can see the effect basically, but with this density, wire diameter and thermal properties of the regenerator just with a bit poor performance. The Achilles-heel the HX parts in every "homemade" heat pump. (I think it again, because maybe just we've made this type of unit in public...) I know you've learnt a lot about this unit, I'm impressed!, so I just suggest to you look around the thermal penetration depth for better performance of heat exchangers. The regenerator density is not a big problem here, that will create a phase shift too, when it will dense enough so try to not worry about it too much. The moisture is a real problem, because the ice could block the gaps. Alpha Stirling has a high compression ratio but if you can hit the -100 degrees Celsius you will experience strange things with sealing, or around the solid material when you want to going under. BLADE SPS: Sorry for the essay!

    • @Al5052H32
      @Al5052H32 Рік тому +1

      Would a phasor diagram be of help here? I have been led to assume that mass flow is king.
      Edit: also that the goal of a phasor diagram is to balance the diagram on the middle of the regenerator. Would this be correct?

    • @mikeconnery4652
      @mikeconnery4652 Рік тому +1

      Thank you for the essay

  • @kortjohn
    @kortjohn 11 місяців тому

    You're perseverance is the spirit of the scientific method and it gets you results. As a result This is SOOO damn inspiring

  • @lidamullendore6166
    @lidamullendore6166 Рік тому +5

    Fantastic progress!!! I admire your bravery to take on such a challenging problem. Can't wait for part 3. Thank you so much! 😘

  • @1weck1
    @1weck1 Рік тому

    The explanations, calculations, and even concept presentation in this video is top notch. I’m learning and enjoying it

  • @BloodyMobile
    @BloodyMobile Рік тому

    4:00 this is a very well done explaination for a really complex system that throws numbers and formula symbols at you like a gatling.

  • @brandonwyffels8002
    @brandonwyffels8002 Рік тому +13

    Really excited to see such great results! I definitely plan on building one for myself in the future

    • @vincentli9106
      @vincentli9106 Рік тому +2

      if you do it, for the love of God tell me how you did it. I can't build crap!

    • @b-beluga4510
      @b-beluga4510 Рік тому

      @@vincentli9106 sit in toilet bruh

  • @bentomo
    @bentomo Місяць тому

    This stuff is fantastic and explained so well. I feel like I'm watching advanced Bill Nye the Science Guy.

  • @Rocketkid2121
    @Rocketkid2121 Рік тому

    This is super cool, I went down a rabbit hole of research into cryocoolers about 6 months ago but never found anyone else doing it DIY. I'm glad you took it to the next step and built it!

  • @crusiethmaximuss
    @crusiethmaximuss Рік тому

    Just found this channel via UA-cam recommendations, and I must say, I am thoroughly enjoying it. Subscribed.

  • @chemicalcookie7546
    @chemicalcookie7546 Рік тому +3

    Awesome video. I have been intrigued by pulse tube coolers since I heard about it on JWST, so to see a functional DIY build is astounding. Great work, looking forward to part 3!

  • @Vinzmannn
    @Vinzmannn Рік тому

    Man, refrigeration is such a cool topic. Thank you for this video.

  • @JuniorJunison
    @JuniorJunison Рік тому +1

    What a magnificent video. I love how well you are keeping track of all the variables and then plotting them on a graph, it's a very nice tool to have when trying to optimize such a system. Well done.

  • @TheoLubbe
    @TheoLubbe Рік тому

    I understood 100% of ±1% of the physics/maths involved, but man was this video fascinating!

  • @ivprojects8143
    @ivprojects8143 Рік тому +1

    Very impressive! It's clear you put a ton of effort into both the project itself and the video. Thanks for sharing!

  • @mohammadkahil8255
    @mohammadkahil8255 Рік тому

    This id one of the best documented experiment with best scientific illustration, salutes

  • @Betruet
    @Betruet Рік тому +1

    Man, I loved the last video and this one didn't disappoint. Great job I'll be watching for updates.

  • @AiOinc1
    @AiOinc1 Рік тому

    I have a ton of these types of components laying around, I have doubts I will ever get around to actually doing this but this is extremely cool. You have my respect and you have my subscription.

  • @BirdbrainEngineer
    @BirdbrainEngineer Рік тому +13

    For the regenerator I recommend looking into a foil-based regenerator. The video here (starts at timestamp): ua-cam.com/video/IgWHuhVcLKA/v-deo.html ,shows how a strip of stainless steel foil, would have small dimples stamped into it, so that when it is wrapped around itself, it makes for nice small airgaps between the wounds of the foil.
    Apparently at least for Stirling engines, it's one of the better types of regenerators to use.

    • @kenmercer2721
      @kenmercer2721 Рік тому

      I was reading a lot about Stirling refrigeration in the early 80's and the "standard" regenerator consisted of a stack of fine wire mesh disks. The stack naturally has poor thermal conductivity down it's length, as required. I think copper was preferred but brass was acceptable and easier to obtain. The mesh is easy to cut with scissors. I've not seen the foil approach but it looks interesting and am left wondering how the dead space, axial conductivity and other properties compare to mesh.

  • @hiphopalest6295
    @hiphopalest6295 Рік тому

    Well I must say, this is my new favorite channel. I love the inclusion of the formulas. Thanks!

  • @banalestorchid5814
    @banalestorchid5814 Рік тому

    That was one of the most interesting videos I have seen in a long time. I semi-learnt a ton of things from it. I say "semi" because there was stuff in it that I didn't know I didn't know. So I didn't exactly "learn" but now I know where to start in truly understanding some of the science and engineering behind the fluid and thermo dynamics of this. Thank you, I've subscribed and look forward to the next part.

  • @mr.indian_pro_creator
    @mr.indian_pro_creator Рік тому

    दिन की शुरुआत यदि एक अच्छे से सुविचार से की जाए तो इससे पूरा दिन ही खुशनुमा हो जाता है। कहने का तात्पर्य यह हुआ कि यदि आप अपने दिन की शुरुआत प्रेरणादायक सुविचार से करेंगे तो अवश्य ही आप पूरे दिन भी उसी प्रेरणा के अनुसार काम करेंगे। यह आपके दिन को तो अच्छा बनाएगा ही बनाएगा, साथ के साथ इससे आपको अच्छा काम करने की प्रेरणा मिलेगी।

  • @nolanmods7172
    @nolanmods7172 Рік тому

    I really think adding the second piston will yield better results! Can't wait to see the next video on this!!

  • @corey736
    @corey736 Рік тому

    This is amazingly thorough and well thought out. Congrats on the Hackaday link too.

  • @miltonbradley4249
    @miltonbradley4249 Рік тому

    I wish my professors were as good as you and your explanation. VERY WELL DONE

  • @boltonky
    @boltonky Рік тому

    Wicked work and for how much information you put across it doesn't get dull. Looking forward to future updates :)

  • @LassIV
    @LassIV Рік тому +1

    Excited to the new episode! Pretty interesting to see that actually cooling Oxigen and Argon.

  • @SignalDitch
    @SignalDitch Рік тому +1

    This is a super fun project to follow, thanks for the thorough presentation!

  • @ChrisContin
    @ChrisContin Рік тому

    Great idea! The functional part of “cold effect” you’re using is the guarantee of all potential energy lost in a cold stuff. To amplify your effect discover ways of reducing potential energy in the material used. Specific heat is one, or the ability of a material to regain heat. Isolate the chamber in all directions except one (or so) and draw it through a salt-water bath, which is notoriously disconductive of heat. Hope to see Part 3!

  • @dn275
    @dn275 Рік тому +1

    Really excellent presentation. I’m looking forward to seeing more of your work! Success or failure, both will be a fascinating learning experience.

  • @jillianonthehudson1739
    @jillianonthehudson1739 Рік тому

    One of the most underrated channels on UA-cam

  • @unicornadrian1358
    @unicornadrian1358 Рік тому

    Great video, love the way you document every step and show your working. 😊

  • @victoryfirst2878
    @victoryfirst2878 Рік тому

    I have to say your logic in doing this project is right on. Have to admit you and I are brothers from the same mother. Look forward to your videos that take my imagination of making things to another level for sure. Keep up the great work fella.

  • @flomojo2u
    @flomojo2u Рік тому

    Great work!! Very exciting performance for very modest materials, I'm really looking forward to your next video.

  • @R290s_biggest_fan
    @R290s_biggest_fan Рік тому

    This is the best fluid dynamics lesson I've ever had

  • @alex4alexn
    @alex4alexn Рік тому +1

    Dang it, i cant wait for the next one, these are so cool and i really enjoying seeing what you build and your thought process, cant wait to see you get some liquids dropping out of that baby, cheers

  • @udovan
    @udovan Рік тому

    Great video. One bonus for your tip for the cleanup of steel wool with a magnet, is to put the magnet into a plastic bag first. Then when you're done you can just fold over the bag and remove the clean magnet :)

  • @Barnaclebeard
    @Barnaclebeard Рік тому

    linear motor as a marital aid, that's an excellent attitude

  • @RumoredAtmos
    @RumoredAtmos Рік тому

    Very cool video. I liked how you showed the math and explained the relations between things such as the effect of the diameter of the copper or the differences in surface area used in the regenerator. You got my sub

  • @namaefumei
    @namaefumei Рік тому

    data analysis and scientific method is unbeliavable. Thanks a lot for sharing!

  • @BrilliantDesignOnline
    @BrilliantDesignOnline Рік тому +1

    As a random passerby, with science knowledge, I had no idea this was possible..Great video. Fly Wheel doesn't hurt either :-)

  • @grahamehadden4320
    @grahamehadden4320 Рік тому

    A very thorough video. Made me think of poteen making.

  • @darkwolf1328
    @darkwolf1328 Рік тому +2

    This is incredible! One piece of advice though, PVC is not usually rated for a load. You appear to know what you are doing, but there are a lot of people every year from the PVC in their potato cannon (and similar projects) exploding under pressure. I don't know too much about it but it might be something to look into if you didn't know about it (especially since plastic becomes even more brittle the colder it gets). It would be a shame if this project was never finished because of a material mishap

  • @poprawa
    @poprawa Рік тому

    This project is as mental, as impressive. I love it

  • @camfocus8888
    @camfocus8888 Рік тому

    From both you and me have same nail, I believe we think the same way too! I like your idea and work as well!

  • @user-nj9mh7ly2n
    @user-nj9mh7ly2n 5 місяців тому +1

    And he's using the correct units! +10 points!

  • @alexscarbro796
    @alexscarbro796 Рік тому

    A tip I like for cleaning up ferrous metal swarf. Put the magnet in a bag. Swipe it over the swarf, then turn the bag inside out. The magnet remains clean and the swarf stays inside the bag.

  • @ATomRileyA
    @ATomRileyA Рік тому

    Really enjoyed watching you experiment with the cooler, cant wait to see how it goes in the future so i subscribed.

  • @nitromeano
    @nitromeano Рік тому

    I love your content, it is a beautiful example for everything engineering stands for, thank you for producing it.

  • @mikaellavoie6811
    @mikaellavoie6811 Рік тому +1

    Can't wait to see the sequel! Captivating work i love it!

  • @theGraphicAutist
    @theGraphicAutist Рік тому +1

    very cool... I'm after the same thing but ur way smarter than I! I'm routing for u... and waiting impatiently for ur next video!

  • @InservioLetum
    @InservioLetum Рік тому

    17:50 You really get an idea of this cooler's power when he zooms out. Even the front half of his *DOG* is frozen white! 😆

  • @sky173
    @sky173 Рік тому

    This is the 'coolest' thing I'll see today on UA-cam. Thanks for sharing.

  • @paulbrouyere1735
    @paulbrouyere1735 Рік тому

    Very interesting project. This can definitely be used with renewable energy.

  • @NourMuhammad
    @NourMuhammad Рік тому

    I came here because I saw 3d printed parts and thought this should be easy since I have 3d printer, but after 5 min of watching I changed my mind! :LOL
    Subscribed!

  • @Julian_Kulenkampff
    @Julian_Kulenkampff Рік тому +2

    This is so cool! Please keep going! I really like the optimizing approach you took :D

  • @user-hw9ui8pu9s
    @user-hw9ui8pu9s Рік тому

    Тема получение низких температур в домашних условия очень интересует меня. Ваши технические решения очень интересны и поучительны. Ваши оригинальные решения и конструкции поражают простотой. Думаю изготавливать такие устройства имея скромные возможности но возможный результат вдохновляет и даёт много возможностей получения газов и получения низких температур. Есть несколько идей в числе которых изготовления высоко вакуумного насоса схожего с вашим компрессором. Не смотря что у меня есть двухступенчатый насос вакуумный и диффузионный есть большая вероятность изготовления из простых материалов насоса высокого вакуума с производительностью не хуже чем турбомолекулярный и диффузионный. Идея в том что рассматриваю вакуумный как обратный насосу создающий давление. Использую ваши конструктивные решения думаю изготовить. Благодарю.

  • @user-ym9wi8fr6e
    @user-ym9wi8fr6e 5 місяців тому

    @17:38:
    "... but I think that's where I'll leave that for this video..."
    AWWW nooooo :D
    Damn dude, this was sick af totally stoked for next episode!!

  • @qownson4410
    @qownson4410 Рік тому

    You need a patreon or something. Some people might wanna throw money at you? What you're doing is refreshing.
    Happy New Year.

  • @jtcustomknives
    @jtcustomknives Рік тому

    Very cool project and glad your still going after it. I own a cryo freezer our heat treating company and I have it set at -86C. It has duel compressors to get that cold.

  • @poldiderbus3330
    @poldiderbus3330 Рік тому

    This is kind of a project I would have expected to see from Ben / Applied Science! Really cool, great job!

  • @williamogletree4153
    @williamogletree4153 Рік тому

    PV=NRT WITH THERMAL CONDUCTANCE AND DISSIPATION...
    EXCELLENT VIDEO

    • @williamogletree4153
      @williamogletree4153 Рік тому

      however you're not fully accounting for thermal conductance in the shotgun dissipators

    • @williamogletree4153
      @williamogletree4153 Рік тому

      if you spread your thermal dissipators over the XYZ axis instead of stacking them, in other words, in a spherical configuration it should achieve much greater thermal dissipation. goes in it from the core goes out it from the outside of the sphere to rejoin to a central manifold should boost efficiency exponentially. then consider cooling the outside of the sphere with the secondary cooling system you may get within liquid nitrogen range at low energy input
      just a suggestion keep up the good work brother

  • @DavoodAnsariOgholBeig
    @DavoodAnsariOgholBeig Рік тому

    Amazing piece of work. Really impressed!

  • @scottneels2628
    @scottneels2628 Рік тому

    Man that's cool! I'm hooked. Can't wait for the next installment.

  • @beatrute2677
    @beatrute2677 Рік тому

    I don’t understand much of it, but I can appreciate and enjoy it, thanks man

  • @adrian5895
    @adrian5895 Рік тому

    Thanks for your videos! I really enjoy them.

  • @giovanni4151
    @giovanni4151 Рік тому

    amazing video thanks. i study engineering and watching this video was way more clear then many labs experiences in my uni

  • @Tristoo
    @Tristoo Рік тому

    god damn I wish I could subscribe twice man. absolutely sick. and this video I actually understood like 95% of it.
    Lmao the scenario of being your roommate just came to mind and it's absolutely hilarious-
    +"hey man"
    "hey"
    +>looks at contraption of 3d printed stuff with bolts on it, some piston, steel wool, PVC piping, some copper tubing and some tank-like thing. can't for the life of self figure out what it could possibly be
    +"so you making like a kart or something?"
    "nope"
    +"steam engine?"
    "closer kinda"
    +"what is it?"
    "cryo cooler"
    +>doesn't believe random assortment of random could possibly be the type of thing used mostly in incredibly expensive industrial equipment
    +"no way"
    "way"
    +"so you like freezing water or something?"
    "that was last prototype, this is now freezing co2 "
    +>looks up freezing point of CO2 and realizes that's cold af
    +>further looks at assortment of random things bolted onto the board
    +"... okay now that's cool"
    "quite.. but still only half as much as it will be"
    I've had that happen before where I do something insane and people are like "no way you made that.. you made that?" - but this is on another level.
    Anyway, thank you for the video once more. And as always looking forward to the next one.

  • @jorgegalindo658
    @jorgegalindo658 Рік тому

    woooow great job this is awesame i understand 20% what you talk but with all thge eefort to explain and show results is very
    entertaining

  • @YakiAttaki
    @YakiAttaki Рік тому

    I like your funny words, magic man.
    I have no idea what this project is about but its interesting at the very least!

  • @Moist_yet_Crispy
    @Moist_yet_Crispy Рік тому

    Really loving these videos. Great work and learning a lot.

  • @avenuex3731
    @avenuex3731 Рік тому

    People say “cat videos” but I say this, this is what YT is for. Excellent.

  • @electricpaisy6045
    @electricpaisy6045 Рік тому

    I like how there are not even any expensive or highly advanced parts included.