Apriori Algorithm in Data Mining And Analytics Explained With Example in Hindi

Поділитися
Вставка
  • Опубліковано 22 січ 2025

КОМЕНТАРІ • 239

  • @kevinboghani272
    @kevinboghani272 5 років тому +114

    Spent 40 mins on its theory and couldn't learn shit. 5 mins into this video and I feel like a pro. Thanks bro!

  • @prashantmhatre9225
    @prashantmhatre9225 4 роки тому +14

    I have done my engineeraing in 2010, But agar aap tabhi rahte to bhai , mai topper ban jata tha... awesome explanation , thanks

  • @ashishdass1605
    @ashishdass1605 Місяць тому +3

    You are a saviour bro....6 years down the lane and this video is helping students pass their semester exams... you have our good wishes with you bro❤❤

  • @gautamverma9762
    @gautamverma9762 3 роки тому +5

    Possibly the best explanation of apriori algo out there on YT.

  • @Jitendrachouhan1999
    @Jitendrachouhan1999 2 роки тому +20

    Sir if you are reading my comment .. In these questions have 1,2,5 you forget but our answer is Accurate.
    Thanks for making that kind of video 👍

    • @animelover5271
      @animelover5271 2 роки тому +5

      yes bro 1,2,5 is also triplet

    • @hemrajbudhathoki9436
      @hemrajbudhathoki9436 Рік тому

      @@animelover5271 it is triplet. However, 1, 2 is rejected in step 2. so the set which contains 1, 2 is rejected.

    • @divyamarora3071
      @divyamarora3071 Рік тому +11

      @@hemrajbudhathoki9436 then what about {1,2,3}?

    • @samyakjain3239
      @samyakjain3239 Рік тому

      @@divyamarora3071 Its {1,3,2}

    • @Hackve-l7z
      @Hackve-l7z 8 місяців тому

      Bhai abb kyy krta hai tu placement mili kyy

  • @Gfghbf
    @Gfghbf 6 років тому +14

    sir u are supremely talented i always watch ur videos they are so useful !!!

    • @dude-ox2em
      @dude-ox2em 5 років тому

      Ivideyum Malayali💪🏻

  • @deadlykaiz4602
    @deadlykaiz4602 25 днів тому +1

    Thank you sir I performed well in my exam just because of you ❤ once again Thank you 💕

  • @rucha520
    @rucha520 2 роки тому +15

    Good video👍🏻
    Also Acc. To anti monotonicity if item set violates contraints so will its superset.
    So only {2,3,5} should be considered for last table.

    • @noneofurbusiness565
      @noneofurbusiness565 8 місяців тому +1

      so anyone who does not understand this comment : she means to say that for {1,2,3} there is 3 subset {1,2} , {1,3} and {2,3} within which {1,2} does not have min support >=50%(check previous step) so the super set {1,2,3} is invalid same is for{1,2,5} and for {1,3,5} in which {1,5} does not have min support >= 50% . there was a lot of confusion in comment section so i hope this helps

    • @Abhishek-kr8ci
      @Abhishek-kr8ci 7 місяців тому

      @@noneofurbusiness565 yes it does thanks

  • @09khushalbheke42
    @09khushalbheke42 2 роки тому +1

    Sir this videos are very useful for us because our college teachers don't teach like you,
    I request you please keep doing videos for us

  • @VoyagerVlogs
    @VoyagerVlogs 5 років тому +2

    Aaj ka video bada kamal ka hua !!!! Thanks

  • @Pranav-vn8bp
    @Pranav-vn8bp 5 років тому +5

    Bhai mera ek suggestion hai ki tu agar "english ke subtitles dalega to tere views aur subscribers dono badhenge"...
    I know it'll be a time consuming task but Mark my words this will really help "you grow in life" n international viewers will love it. I'm from India and as an Indian I feel you'll make us proud by doing this.

  • @shreechatane9215
    @shreechatane9215 2 роки тому +2

    So well explained I can write a cpp code for this algorithm 🔥

  • @abhyudaypratap366
    @abhyudaypratap366 5 років тому +3

    Are sir ji maja aa gaya keep it up
    I like the way u are teaching
    Salute h sir aapko

  • @emrem794
    @emrem794 2 роки тому +7

    Dude u should do an English Version. Even I don' t know Hindi, I understood the basics of this concept. Thank you

  • @sunrise7964
    @sunrise7964 Рік тому

    Such a fabulous faculty I have never seen in my life

  • @cybershrajal
    @cybershrajal 2 роки тому +2

    sir kal exam hai ML ka apriori rat ke ja raha hu aapke chanal se .bhagwan kare aa jaye bas 🙂🙏🤍

  • @neatelf9913
    @neatelf9913 5 років тому +82

    When you get a girlfriend for the first time 4:19

  • @ShivaniOnYT
    @ShivaniOnYT 5 років тому +28

    6:06 1,2,5 ka bhi 1 hai support

    • @sajidrsheikh
      @sajidrsheikh 5 років тому +6

      He must have forgotten about it. 1,2,5 support is 25%

    • @ankitmukherjee7036
      @ankitmukherjee7036 5 років тому

      But (1,2,5) ka second step me elimination hota hai hai jab (1,2) and (1,5) k probabilities 1/4 rehta

    • @anujmore7547
      @anujmore7547 4 роки тому +2

      @@ankitmukherjee7036 Yes u r right

    • @rahulchaubey8988
      @rahulchaubey8988 4 роки тому

      yes correct

    • @Kashmixx
      @Kashmixx 4 роки тому

      Exactly❤️

  • @vanisrikumar8741
    @vanisrikumar8741 2 роки тому

    U saved 10 mins of my tum TQ❤️‍🔥

  • @samriddhisingh1649
    @samriddhisingh1649 4 місяці тому

    Thankyou sirrr❤ 2 phone se subscribe bhi krdiye 😩❤️

  • @rajendramankar8226
    @rajendramankar8226 6 років тому +2

    छान!!👌👌👌👌

  • @fahimchowdhury6742
    @fahimchowdhury6742 Місяць тому

    YOU SAVED ME BROTHER 💚

  • @funnysid8180
    @funnysid8180 3 роки тому

    Tum to dhamaka krdiye bhai ❤️❤️❤️

  • @shru1244
    @shru1244 8 місяців тому

    Apriori algorithm is used to find Association between the two objects.
    End goal / objective of apriori algorithm is to get the association rule between the two objects.

  • @anshulthakur3806
    @anshulthakur3806 6 років тому +4

    Awesome Tutorial

  • @montusgamer1234
    @montusgamer1234 8 місяців тому +2

    thank u sir kal mera exam tha aur apki video dekh kar samaj agya. Btw is there any chance agar ap online classes de sako?

  • @Sheetalmanohar
    @Sheetalmanohar 4 роки тому +2

    Really good explanation. Great job

  • @tejasamaresh9900
    @tejasamaresh9900 2 роки тому +9

    SIr, I am not able to find your video on Association rules which includes the topics dedicatedly on Support confidence and Lift ratio. Could you pls attach the link.

  • @milansanadhya9708
    @milansanadhya9708 4 роки тому +1

    Very nicely explained

  • @dhairyamorbiya467
    @dhairyamorbiya467 2 роки тому

    clear and precise🙌🙌

  • @mathematicians5925
    @mathematicians5925 2 роки тому

    Very nice Explanation Sir 😊👍👍

  • @siddugoud1294
    @siddugoud1294 4 роки тому +1

    I like your smile in the beginning...

  • @RanjitSingh-rq1qx
    @RanjitSingh-rq1qx 2 роки тому

    Sir your content is mind-blowing but less subscriber . I don't like it. But sir u don't very sir, i will promote your content with my friends 🥰🥰❤️

  • @sadaffatima853
    @sadaffatima853 5 років тому +1

    Thank you so much
    . great explaination

  • @deepakalinavlogs
    @deepakalinavlogs 3 роки тому

    Good wishes. Loved it.

  • @digvijay_karande
    @digvijay_karande 2 місяці тому

    Kadddak 🤜🤛

  • @sudhanshuranshevare
    @sudhanshuranshevare Рік тому +1

    Thank you so much sir❤❤

  • @m00ndr0p
    @m00ndr0p 6 років тому +2

    Thank you. Great tutorial !

  • @tulsikhatri8694
    @tulsikhatri8694 5 років тому

    Great Great Great explanation...

  • @mrinalsharma18
    @mrinalsharma18 4 роки тому +18

    rather than finding support percentage of each dataset you could have change the minimum support percentage to numeric ,it could be way more easy to solve and to understand.

  • @pragyajais4645
    @pragyajais4645 4 роки тому

    Thank you Sir... You are too good , this video is very helpful for me

  • @akshayhandgar9492
    @akshayhandgar9492 6 років тому +2

    Congrats for 10k views. Hope adsens are add on next time🔥🔥👏

  • @akshatsharma5774
    @akshatsharma5774 Рік тому +21

    Sir isme 3rd step me {1, 2, 5} ka pair nhi bnega?

    • @Bollywood_beatz
      @Bollywood_beatz 8 місяців тому

      Correct i was also thinking the same

    • @RishabhJain-ny1ze
      @RishabhJain-ny1ze 7 місяців тому +1

      Nhi Jo pair hmnare pas second m aaye h surf unse hi bnate h

    • @nuctanKatira
      @nuctanKatira 4 місяці тому

      @@RishabhJain-ny1ze hey brother! i want to know ,, how to make pair in this step mean ..., from (1,3)(2,3)(2,5 )(3,5) this set ... how to make ?

    • @RishabhJain-ny1ze
      @RishabhJain-ny1ze 4 місяці тому +1

      @@nuctanKatira bro just take those pairs where something is common and write those pairs and write the common element once

  • @abhijeethirekhan5175
    @abhijeethirekhan5175 5 років тому

    Aaj ka ye video kamal ka hai

  • @gourav1163
    @gourav1163 2 роки тому +37

    Saari video chaant maari kisi ne bhi confidence and support nhi btaya ki ye actually me hota kya hai😑

    • @paper-toon1012
      @paper-toon1012 Рік тому +3

      Chhod de Bhai.....

    • @GangaramSahu-xj6hd
      @GangaramSahu-xj6hd 11 місяців тому +31

      Yeah that's true bro Koi explain nahi karta theekse,.. I'm trying here maybe you get this..
      1. Support: Simply the percentage of occurrence.. (occurence of single item or 2 items together etc) in given dataset..
      2. Confidence: it is conditional probability, like given a what is the probability of b..
      Let's see one example, if we have a database of people buying shoes 👟 and socks 🧦, so total number of times they both purchased together divided by total number of transactions is SUPPORT, and If I buy shoes then I want to know like how many people buy socks after buying shoes then that's CONFIDENCE,
      SUPPORT = 👟+🧦 / no. transactions
      CONFIDENCE = 👟+🧦 / 👟

    • @kripadhrangdhariya9194
      @kripadhrangdhariya9194 10 місяців тому +7

      Support:
      Think of it as popularity: It tells you how often two items are purchased together.
      Example: Let's say out of 100 customers, 30 buy both lemonade and cookies. So, the support for "lemonade with cookies" is 30%.
      Confidence:
      Think of it as reliability: It tells you how likely someone who buys one item (let's say lemonade) will also buy the other item (cookies).
      Example: Out of those 30 who bought lemonade, 25 also bought cookies. So, the confidence for the rule "if someone buys lemonade, they also buy cookies" is 25/30 (around 83%).
      Finding Rules:
      Gather data: Track customer purchases (lemonade, cookies, etc.).
      Calculate support: See how often combinations appear (e.g., lemonade & cookies).
      Calculate confidence: For each combination, see how often the second item is bought with the first (e.g., how many who bought lemonade also bought cookies).
      Set thresholds: You decide what level of support and confidence is interesting. For example, you might only consider rules with support above 20% and confidence above 70%.
      Example Rule:
      Rule: "If someone buys lemonade (antecedent), then they are also likely to buy cookies (consequent)."
      Support: 30% (30 out of 100 customers).
      Confidence: 83% (25 out of 30 lemonade buyers also bought cookies).
      This suggests that since many people buying lemonade also buy cookies, having cookies available might increase your sales.
      Remember:
      High support means the combination is popular, but it doesn't guarantee one causes the other (people might just like both).
      High confidence strengthens the connection between the items.
      One of the most common algorithms used for finding frequent itemsets is called Apriori. Here's a breakdown of how it works in simple terms:
      Imagine you have a basket full of groceries:
      Each item in the basket represents an item in your data (e.g., milk, bread, eggs).
      You want to find out which combinations of groceries appear together frequently.
      Apriori works like this:
      Start small: It begins by looking at individual items and counting how often each appears in your data (like counting how many times you see milk, bread, and eggs).
      Find frequent single items: Based on a minimum support threshold (like a minimum number of times an item needs to appear to be considered frequent), it removes any item that doesn't show up often enough.
      Level up: Now, Apriori focuses on pairs of items. It combines the frequent single items from step 2 to see which pairs appear together often. Again, it eliminates any pairs that don't meet the minimum support.
      Iterate: This process continues. Apriori takes the frequent pairs and combines them to form triplets (like milk, bread, and eggs), checks their frequency, and removes any that don't meet the threshold. This keeps going as long as it can find frequent itemsets at each level.
      Key points about Apriori:
      Candidate generation: At each level, Apriori creates a list of potential frequent itemsets (candidates) based on the frequent itemsets from the previous level. This is why it's called a candidate generation approach.
      Iterative and level-wise: It works its way up one level at a time, finding frequent itemsets of increasing size in each iteration.
      Pruning: To avoid checking unnecessary combinations, Apriori uses a clever trick. It knows that if a smaller subset of items (like milk and bread) isn't frequent, then any larger set containing those items (like milk, bread, and eggs) cannot be frequent either. This helps reduce the number of candidates to evaluate.
      Think of it like building a pyramid:
      You start with the single items as the base (frequent single items).
      Only frequent pairs can be placed on top, forming the next level.
      As you go up, only combinations based on already frequent items are considered, ensuring all levels are built from frequent building blocks.
      Apriori is an efficient algorithm for finding frequent itemsets, but it can be computationally expensive for very large datasets due to the repeated candidate generation and support counting. There are other algorithms like FP-Growth that address this issue.

    • @gourav1163
      @gourav1163 10 місяців тому

      haha thanks but I think it's a little too late for me😅....well it will help others.@@kripadhrangdhariya9194

    • @semdantani1
      @semdantani1 9 місяців тому +3

      Support bhai wo hota hai jis se combination ki popularity bata ta hai mtlb konsa combination sbke jyada frequently use hota hai or confidence hame bata ta hai ki koi particular a ko lege to b ko lene kitan jaruri hai jese ki milk ke sth bread

  • @tapanjeetroy8266
    @tapanjeetroy8266 5 років тому

    Thanks a lotbsir.. You have done a great job

  • @vikatagamingyt3251
    @vikatagamingyt3251 Рік тому

    Awesome video sir🥰

  • @AB-we2vm
    @AB-we2vm 4 роки тому +7

    7:00 sir what about 2,1,5 ? Plz ans

    • @anubhibudakoti6247
      @anubhibudakoti6247 4 роки тому

      {2,1,5} is ignored, as he already told....bcz it was having the support of 25%

    • @leovaldez9498
      @leovaldez9498 3 роки тому

      @@anubhibudakoti6247 but so does {1,3,5} and {1,2,3}. he shouldve mentioned it

  • @charugera7654
    @charugera7654 4 роки тому

    Excellent explanation

  • @chandankhuntia7017
    @chandankhuntia7017 Рік тому

    beautifully explained

  • @switugohil03
    @switugohil03 5 років тому

    Super work...go ahead

  • @vikramadityasingh4979
    @vikramadityasingh4979 3 роки тому +63

    Sir why didn't you include (1,2,5) in triplet formation? That triplet is present in TID 300.

    • @priyankitanwar3491
      @priyankitanwar3491 3 роки тому +15

      because {1,2} and {1,5} are discarded so there's no common ground to group them

    • @abhimanyouknow
      @abhimanyouknow 3 роки тому +4

      @@priyankitanwar3491 then how did we get {1,2,3}?

    • @sougatasen3691
      @sougatasen3691 3 роки тому +24

      Yes he should have included {1,2,5}
      But it would have been left out eventually cause it's support would have been 1/4=25%

    • @Lionelmessi-zp9vt
      @Lionelmessi-zp9vt 2 роки тому +3

      @@sougatasen3691 yeah this might be the reason

    • @rdxgaurav3483
      @rdxgaurav3483 2 роки тому

      @@abhimanyouknow cause {1,3} is still in the pair set

  • @ayushjoon9526
    @ayushjoon9526 16 днів тому +2

    All the best everyone for tomorrow exam

  • @stephyjohn4517
    @stephyjohn4517 4 роки тому +3

    Sir,
    I kindly request you to share video on graph mining( apriori based approach for mining frequent subgraphs).Your videos are helpful and easy to understand.Hope to see more videos from you.

  • @amarsharma466
    @amarsharma466 4 роки тому

    Nice, easily explained

  • @DipanGhosh_Dipdu
    @DipanGhosh_Dipdu 4 роки тому

    Great explanation

  • @anikacharjee3932
    @anikacharjee3932 5 років тому

    Wow!!!!!! Just Amazing

  • @jaykothari6818
    @jaykothari6818 5 років тому

    Awesome explanation....

  • @sultanurrahmanshuvo
    @sultanurrahmanshuvo Рік тому

    very helpful video sir

  • @humayunnasir6261
    @humayunnasir6261 5 років тому

    good explanation bro . Love from Pakistan

  • @shreyashachoudhary480
    @shreyashachoudhary480 2 роки тому

    Superb!

  • @vijayjangir3556
    @vijayjangir3556 3 роки тому +5

    The itemset III that you've generated, shouldn't include {1,3,5} and {1,2,3}. the only valid candidate after candidate pruning as per F(k-1) would be 1 itemset. that is {2,3,5}
    This is as per the anti-monotonic property of support. and the foundation fo apriori as opposed to bruteforce.

  • @harshpandey8245
    @harshpandey8245 3 роки тому +7

    Hi, in the 3rd step of triplets, couldn't we add (1,2,5) too- wo bhi to ek triplet hai?
    that also has a support of at least 1, i.e. (1,2,5)=1/4=25%
    Please confirm!

    • @priyankitanwar3491
      @priyankitanwar3491 3 роки тому +6

      because {1,2} and {1,5} are discarded so there's no common ground to group them

    • @adarshtapariya4275
      @adarshtapariya4275 Рік тому

      @@priyankitanwar3491 but (2,5) is there

  • @BritBlissAdventures
    @BritBlissAdventures 2 роки тому

    Very nic super explanation

  • @moeenkhan1066
    @moeenkhan1066 6 років тому

    Thanks for this video 😊

  • @machinelearning6846
    @machinelearning6846 5 років тому +1

    Please make brief about gradient descent algorithms.

  • @bisheshtalukdar2163
    @bisheshtalukdar2163 5 років тому +3

    what if in 3rd itteration all item set cant meet min support

  • @ankitsuman8205
    @ankitsuman8205 3 роки тому

    Thank you ❤️

  • @MalikQasim-ri4oq
    @MalikQasim-ri4oq 2 роки тому

    Really appreciate

  • @godofwar8262
    @godofwar8262 10 місяців тому +1

    Items set ❌
    Atom set ✅

  • @jashanbhayana8089
    @jashanbhayana8089 Рік тому +1

    there should be {1,2,5} also in the last table

  • @kamaljeetkaur8653
    @kamaljeetkaur8653 4 роки тому

    Thnk uuu sirrrr😊😊😊😊😊😊😊😊😊😊😊😊😊😊

  • @yamzaidi
    @yamzaidi 5 років тому +2

    5:50 we can have (2,3,5) is also a possible triplet then why you didn't include it in III matrix ????

  • @dharmendra.pandit
    @dharmendra.pandit Рік тому +1

    Hello and welcome, dosto, to Five Minute Engineering. Aaj ka video vakemein hi kamal ka hone vala hai.

  • @MdRashid-zx6cn
    @MdRashid-zx6cn 4 роки тому

    Thank you sir for video

  • @akashbhosale6353
    @akashbhosale6353 4 роки тому

    Thank You Sir

  • @KajalSingh-h2n
    @KajalSingh-h2n 23 дні тому

    Thank you

  • @Billu_india
    @Billu_india Рік тому

    sir how to determine min. the threshold? can we choose any value we want ? Or is it pre defined ??

  • @yashraj5766
    @yashraj5766 6 років тому

    sir please upload video on closed frequent itemsets and maximal frequent itemsets....

  • @siddheshnikam5741
    @siddheshnikam5741 Рік тому

    Does order matters in forming pair?

  • @divyanshsao3846
    @divyanshsao3846 Рік тому

    What if we have more than 3 elements after the triplet formation , lets say if we have 4 items remaining then what should we do ?

  • @vidyashreerayar7417
    @vidyashreerayar7417 Рік тому +1

    could 1,2,5 also be a combination? although it would ge eliminated as support doesn't meet threshold.

    • @roshantimilsina7354
      @roshantimilsina7354 Рік тому

      yes surely one combination of triplet 1,2,5 is missing

    • @sumantrinidas2031
      @sumantrinidas2031 Рік тому

      probably because {1,2} and {1,5} were eliminated in the second step.

  • @25kirtan
    @25kirtan 3 роки тому

    thanks bro!

  • @nikitasinha8181
    @nikitasinha8181 4 роки тому

    Thank u so much

  • @satyajitdas3120
    @satyajitdas3120 10 місяців тому

    Sir minimum support and threshold confidence agar qsn main na deya ho tohh ??? Kya pakar na hai ?🙄

  • @manshalkhatri9289
    @manshalkhatri9289 Рік тому

    Helpful

  • @badal8435
    @badal8435 4 роки тому

    Thanq sir

  • @bhavishamoghe2036
    @bhavishamoghe2036 3 роки тому +2

    while doing the triplet one why didnt you took {1,2,5} item set???

    • @priyankitanwar3491
      @priyankitanwar3491 3 роки тому

      because {1,2} and {1,5} are discarded so there's no common ground to group them

    • @bhavishyaarya6520
      @bhavishyaarya6520 3 роки тому

      I also have the same dought

  • @sushil4211
    @sushil4211 6 років тому

    sir..
    mining various kinds of association rules explain Karroo Na.

  • @shalabhbhatiya2292
    @shalabhbhatiya2292 4 роки тому +1

    sir why you are not taken {1,2,5}

  • @anilkumarpasvan9462
    @anilkumarpasvan9462 5 років тому

    Min sup. Count 50% ko
    100÷50=2 bhi le sakte hai n?
    So that we have no need to find %,again and again.

  • @becomingfarhan211
    @becomingfarhan211 Рік тому +1

    Why is 125 not taken as a triplet

  • @anmolagrawal4401
    @anmolagrawal4401 4 роки тому +1

    What was the role of threshold confidence?

  • @anmol_28
    @anmol_28 4 роки тому +14

    Triplet should also include {1,2,5}

    • @priyankitanwar3491
      @priyankitanwar3491 3 роки тому +4

      because {1,2} and {1,5} are discarded so there's no common ground to group them

    • @techeasy602
      @techeasy602 2 роки тому

      {1,2,5} occurs only one time which gives 25% support that's why it is discarded

    • @hardiksingh8119
      @hardiksingh8119 Рік тому

      Gyaan mat pel zyada bhadwe

    • @Akuma7499
      @Akuma7499 Рік тому

      Yes

  • @palisthasingh9395
    @palisthasingh9395 3 роки тому +1

    what if minimim support and threshold confidence is not given

  • @pleasantdayNwisdom
    @pleasantdayNwisdom 7 місяців тому

    {1,2} ,{ 1,5} got eliminiated , now why it has been considered in 3 pair ?{1,3,5} and {1,2,5} should not have been considered to check only like we did not check {4} ? Am i right?

    • @mpratap1711
      @mpratap1711 5 місяців тому +1

      discarded set ki help se banane wale sets bhi kisi kaam ke nahi hai, bcoz unka support level kam hai, so finally they r going to be rejected, so yes we can ignore the above sets that u hv mentioned.

  • @Harleenkaur-yp2el
    @Harleenkaur-yp2el Рік тому

    Thanku sir

  • @tejasbhawre5301
    @tejasbhawre5301 5 років тому +1

    sir will support of (1,2) is same for (2,1) ?

  • @Chandan-kx9di
    @Chandan-kx9di 4 роки тому +2

    Why u only made upto triplet set only, why set having 4 or 5 numbers in it not made

    • @mpratap1711
      @mpratap1711 5 місяців тому

      See, the important point is that, the dicarded set can't be used to make further sets. In other words if a set is not frequent itemset then it's superset will also be not frequent itemset.
      "According to anti monotonic property of support, if item set violates support contraints so will its superset."

  • @AbhayTewari-lc3hc
    @AbhayTewari-lc3hc 2 роки тому +6

    Sir, in the last table {1,2,5} should also be included