247 - Conditional GANs and their applications

Поділитися
Вставка
  • Опубліковано 22 січ 2025

КОМЕНТАРІ • 70

  • @rubenguerrerorivera7462
    @rubenguerrerorivera7462 9 місяців тому +1

    So beautifully explained, so smooth and highly enjoyable! Thanks a lot Dr.

  • @vafakahnamoie29
    @vafakahnamoie29 2 роки тому +4

    Sir, your tutorials make confusing and complicated AI topics to easy and comprehensible concepts for us. Thanks a lot professor

  • @hessame9496
    @hessame9496 2 роки тому +1

    I cannot thank you enough for sharing your knowledge and preparing and publishing these great tutorials.

  • @cplusplus-python
    @cplusplus-python 3 роки тому +8

    So excited to get to the Code part of GAN, thanks Prof.

  • @ciancian2861
    @ciancian2861 2 роки тому +3

    Thank you!! I'm a data science student and I will start my thesis on this topic next week. Great introduction.

  • @deepalisharma1327
    @deepalisharma1327 11 місяців тому +1

    Amazing work, really appreciate your efforts. 🙏🏻 Please keep making such videos.

  • @rahchandr
    @rahchandr 3 роки тому +4

    Sreeni sir, great going, these sessions are profoundly useful.

  • @Tiago_R_Ribeiro
    @Tiago_R_Ribeiro 2 роки тому

    You are very good and very patient teacher. I watch your videos every single day. Thanks for making videos for mere mortals like me! :D

  • @hanemellethy9036
    @hanemellethy9036 2 роки тому +1

    Great tutorial. Very simple and informative video. I really appreciate your easy and helpful way of explanation. Thanks a million.

  • @eli_m6556
    @eli_m6556 3 роки тому +2

    Great vid as always. Your videos are great to watch even if I’m not working on the given topic.

    • @DigitalSreeni
      @DigitalSreeni  3 роки тому +1

      If you only watch videos on topics that you relate to, then how do you learn about other topics? I think it is very important for us to learn about various topics so we can find the one that really interests us.

  • @parthmodi5734
    @parthmodi5734 2 роки тому

    You deserve a huge round of applause, Thanks for this great content. God bless you:)

  • @calvinchristiano7119
    @calvinchristiano7119 2 роки тому

    Thankyou sir for this amazing tutorial, very clear explanation, very patient teacher....i really appreciate that. Stay healthy sir

  • @TheCzarsoham
    @TheCzarsoham 3 роки тому +1

    Thank you for the clear explanation! I really appreciate your videos

  • @nprestine
    @nprestine 6 місяців тому

    You are the man!
    Thank you, keep up the good work.

  • @wessauder7708
    @wessauder7708 3 роки тому +1

    Thank you so much for this detailed and easy to follow demonstration! It's a major component of my grad research and you have tied the concepts together so well that it really complements and reinforces my understanding.

  • @prashantjaiswal5260
    @prashantjaiswal5260 2 роки тому

    Your videos are genuinely knowledgable sir ...Keep providing with such great contents .
    Please provide these slides also if possible

  • @mohamednaji6178
    @mohamednaji6178 3 роки тому +1

    thank you so much you are amazing I have learned so much from you

  • @maryammoosavi1007
    @maryammoosavi1007 6 місяців тому

    wonderful explanation 👍🏻👍

  • @mohitmeena541
    @mohitmeena541 2 роки тому

    worth every second. thanks a lot!

  • @Suman-zm7wx
    @Suman-zm7wx 3 роки тому

    Finally you are back in the game sir 💚💚

  • @avinolia
    @avinolia 9 місяців тому

    can we use GANs or CGANs to balance the dataset? Please explain sir

  • @cheemay
    @cheemay 2 роки тому

    Great Informative video. Now understand conditional GAN. Thanks #DigitalScreeni
    Waiting For StackGan Implementation

  • @karamsahoo6852
    @karamsahoo6852 3 роки тому

    Yes sir please make more videos on different GAN architectures.

  • @profesorjan7614
    @profesorjan7614 2 роки тому

    Excellent explanation!!!!!!!! Thanks!

  • @VeiyoMwatihanye
    @VeiyoMwatihanye Рік тому

    Is there a video that can help me with binarization using GAN so i can watch that one

  • @aqibmumtaz1262
    @aqibmumtaz1262 Рік тому

    Excellent Great video sir

  • @MilesBellas
    @MilesBellas 7 місяців тому

    Great videos!😊

  • @aashwinsharma1859
    @aashwinsharma1859 2 роки тому

    Thnx a lot for the wonderful explanation

  • @yanivnoema6848
    @yanivnoema6848 2 роки тому

    Thank you for this video!

  • @JoeWazovsky
    @JoeWazovsky Місяць тому

    Great video, but one crucial detail is missing - why simply providing conditional data, without changing the losses make the model to follow the condition? How to measure the extent to which generator followed the condition? For example, what if my label had “cat and a dog”, but generator just produced a dog. Will discriminator notice? Why?

  • @emmanuellabudu9524
    @emmanuellabudu9524 3 роки тому

    Awesome video. Thank you.

  • @drprashantpaikrao
    @drprashantpaikrao Рік тому

    Sir, how we can use GAN for noise removal in document images?

  • @gunjannaik7575
    @gunjannaik7575 2 роки тому

    How to randomize the number of images that are passed in each epoch?

  • @botirkarim9293
    @botirkarim9293 2 роки тому

    Keep continue good luck!

  • @khalidelamraoui256
    @khalidelamraoui256 3 роки тому +1

    thank you for the effort , can i ask you to make an applications for ESRGAN to understand it very well

  • @Darshan0070
    @Darshan0070 3 роки тому

    How to match images for similar products??

  • @mtahirrasheed5538
    @mtahirrasheed5538 3 роки тому

    Can you make videos on the transformers? Vision Transformer for the classification. The main issue is in understanding the input/output shape, number of patches for different images sizes etc. Thanks in advance.

  • @rajeevgoel6170
    @rajeevgoel6170 Рік тому

    Very Good Explained Sir

  • @anonnozahir7375
    @anonnozahir7375 2 роки тому

    Sir can I use this code for doing RGB to Grayscale images?

  • @mustajabhussain9167
    @mustajabhussain9167 3 роки тому +1

    Very helpful video. Can you please tell me that can we perform semantic segmentation using conditional GAN. In this video, you talk about getting real image from semantic segmented image. But can we perform the task we did using UNet architecture (getting semantic segmented mask of specific image)

    • @RohanPaul-AI
      @RohanPaul-AI 2 роки тому +1

      Hi Mustajab - Stumbled upon your comment, and I think this paper did what you are talking about - arxiv.org/abs/1708.05227
      They used conditional GAN and train a semantic segmentation CNN along with an adversarial network that discriminates segmentation maps coming from the ground truth or from the segmentation network for BraTS 2017 segmentation task
      More specifically, they used patient-wise ”U-Net” as a generator and ”Markovian GAN” as an discriminator.

  • @drprashantpaikrao
    @drprashantpaikrao Рік тому

    Sir, do you have made any video on deep dense GAN? If yes please send me it's lesson number or link... 🙏🏼🙏🏼🙏🏼

  • @fatmagulkurt2080
    @fatmagulkurt2080 3 роки тому

    How can I apply k-fold cross validation in the 195. tutorial(195 - Image classification using XGBoost and VGG16 imagenet as feature extractor). I wish you may help me in this situation. Because the most common problem in practice is overfittig. How can I overcome this in this code Thank you for all your effort Sir.

  • @borundas6443
    @borundas6443 3 роки тому

    Sir, do you have any video how to make images from text using GANs? I really need some good tutorial on that.

  • @PUBUDUCG
    @PUBUDUCG 3 роки тому

    Good information . . .

  • @mariovrpereira
    @mariovrpereira 2 роки тому

    very good, thank you

  • @javlontursunov6527
    @javlontursunov6527 11 місяців тому

    Thank you so much :)

  • @umairsabir6686
    @umairsabir6686 3 роки тому

    Hi Sreeni,
    You were great as always. Do you have Mask RCNN using TF2 in your roadmap or not ?

  • @ameerazam3269
    @ameerazam3269 3 роки тому

    Thanks you Sir ... UOH love ..

  • @dannyboichess
    @dannyboichess Рік тому

    thank you sir

  • @alanpress3019
    @alanpress3019 3 роки тому

    Sir, Thank you so much. Are you planning to do some tutorials on meat-learning in the future, e.g., learning to learn gradient descent by gradient descent, or learning to learn without gradient descent by gradient descent, and keras implementation?

  • @sajins9708
    @sajins9708 3 роки тому

    Sir, would you please upload tutorials on object detection algorithms like faster RCNN and fast RCNN.

    • @DigitalSreeni
      @DigitalSreeni  3 роки тому

      Sometime in future but definitely not in the next couple of months. Thanks for the suggestion though, I need to find time to put together code that works and then plan videos. Takes time.

  • @furry2fun
    @furry2fun Рік тому

    sir can you please share these slides

  • @saminsolouki
    @saminsolouki 7 місяців тому

    thank you so muchhhhhh

  • @Selim-of8gq
    @Selim-of8gq 4 місяці тому

    thank you

  • @rs9130
    @rs9130 3 роки тому

    Anything is possible and everything is easy with DIgital Sreeni

  • @mekuriawayelegn1598
    @mekuriawayelegn1598 2 роки тому

    Thanks sir.

  • @saritagautam3483
    @saritagautam3483 3 роки тому +1

    subscribed 🤙

  • @caiyu538
    @caiyu538 3 роки тому

    Thumb up your video though it is busy for something else recently.

  • @agenticmark
    @agenticmark Місяць тому

    midjourney starts making a lot more sense.....

  • @ssangeetha7497
    @ssangeetha7497 3 роки тому +1

    Really I got interest in deep learning methods on watching ur tutorials.sir I wish to clarify doubts in my deep learning based work . So can you share your email I'd.