Jacobian prerequisite knowledge

Поділитися
Вставка
  • Опубліковано 28 лис 2024

КОМЕНТАРІ • 68

  • @johnbrownell1
    @johnbrownell1 5 років тому +87

    My lin alg prof quite literally believes that every 3blue1brown visualization instantly pops into every students head the first time they see a numbers stacked inside of [ and ]

  • @bradzoltick6465
    @bradzoltick6465 4 роки тому +7

    Your videos on the Jacobian matrix are excellent. Clear, insightful and beautifully presented. Thank you.

  • @JoseRojas2
    @JoseRojas2 4 роки тому +11

    Thanks for taking the time to make this... it is clear, concise and allows the watcher to really understand linear transformation.

  • @LaureanoLuna
    @LaureanoLuna 5 років тому +3

    It could be convenient to address a possible confusion, for it would seem that in substituting the new, slanted grid for the old, we are not transforming e.g. (1, 0) into (2, 1), as claimed, but vice versa, since on the new grid, it is (1, 0) what formerly was (2, 1). I suggest: "note we are not changing the basis vectors so that the same old vector (1, 0) gets the new name (2, 1) but so that the same old name (1, 0) gets the new vector; this is required by the fact that L(x, y) = xL(1, 0) + yL(0, 1), that is, we must have the same quantities x and y of the transformed basis vectors L(1, 0) and L(0, 1)".

  • @snehsatyam7072
    @snehsatyam7072 6 років тому +42

    3blue 1brown..... hey man it all makes sense.... thanks

  • @pooppooper4252
    @pooppooper4252 2 роки тому

    For people who are confused:
    4:05 the green vector in the deformed grid/world is DEFINED as [1,0] by people thinking/working with that grid! "We" multiply "their" understanding of a basis vector with the transformation matrix to translate their definition of a basis vector to our language where our basis vector look completely different!
    The transformation matrix helps us to understand that their definition of a basis vector like [1, 0] should be understood as [2, 1] in our definition of the world!
    If you wanna make "them" understand what "we" mean when we talk about a basis vector [1, 0] you have to multiply our (basis)vector with the inverse of the transformation matrix to translate "our" definitions of the world to "their" definitions of the world.

  • @741231478963
    @741231478963 7 років тому +150

    Are you the 3Blue1Brown guy?

  • @sakhawat3003
    @sakhawat3003 5 років тому +9

    Man! I dont know who you are but that was truly enlightening .

  • @fatemehentezari9779
    @fatemehentezari9779 4 роки тому +4

    Thank you sooooooo much. You are the best math tutor ever. Thank you for doing such a great job. Your videos are so helpful. They really make a big difference in my studies.

  • @Originalimoc
    @Originalimoc 6 років тому +15

    This voice makes me excited 😂

  • @ozzyfromspace
    @ozzyfromspace 7 років тому +4

    Random video in my feed, but now I'm interested :). On to the Jacobian, I guess.

  • @bobhohi
    @bobhohi 6 років тому +2

    Thank you professor Khan

  • @aniktahabilder2518
    @aniktahabilder2518 5 років тому +1

    you are the best teacher.

  • @justinward3679
    @justinward3679 7 років тому +6

    MORE MATH MAH BOIS!

  • @everythingaccount9619
    @everythingaccount9619 3 роки тому

    Didn't realize this was Khan Academy until almost towards the end haha.

  • @Steger27
    @Steger27 5 років тому +2

    Question: why does the multiplication of two jacobi matrix, which are functions of one another, equal the identity matrix?

  • @minkyoungkang5451
    @minkyoungkang5451 4 роки тому +2

    What a lecture!

  • @edwardarruda7215
    @edwardarruda7215 3 роки тому

    Covered this in calc 3 without linear algebra

  • @elbay2
    @elbay2 7 років тому +2

    Very well presented!

  • @zakariabaknine7538
    @zakariabaknine7538 7 років тому +12

    Mind-blowing, pretty sexy graph explaining!

  • @aussiedog5221
    @aussiedog5221 Рік тому +2

    It's Grant....3Blue1Brown! I guess before he got famous.

  • @user-nh1yz5vo4o
    @user-nh1yz5vo4o 6 років тому +9

    you are awesome, 3blue1brown

  • @jithinpoliyedathmohanan7237
    @jithinpoliyedathmohanan7237 5 років тому +7

    KIDS just don't waste your time in school ...skip those classes and go swimming or play soccer..when you are home watch these videos..
    Trust me, I wish I should have done that ,instead of wasting all those hours mugging up who knows what boxes full of numbers and derivatives.

  • @sourishwaikar1998
    @sourishwaikar1998 2 роки тому +1

    This is absolutely beautiful ❤️

  • @chejado
    @chejado 7 років тому +2

    Did we just witness falling down the Golden Spiral? I noticed Fibonacci's sequence in your equations. Starting @ 3:07-ish *Edit - Pascal's Triangle as well, hmm?

  • @yixuan9213
    @yixuan9213 Рік тому

    Great teachers, thanks ❤

  • @tigerspidey123
    @tigerspidey123 3 роки тому

    so this is eigen vector and linear transfom I assume...

  • @Wam_somp
    @Wam_somp 11 місяців тому

    I really wish i'd seen this when i was actually taking linear algebra 😭

  • @peasant7214
    @peasant7214 6 років тому +1

    where is the next video?

  • @danialdunson
    @danialdunson 5 років тому +1

    hell yeah i love this guy....is there a playlist of every video with this 3b1b dude

  • @user-or7ji5hv8y
    @user-or7ji5hv8y 4 роки тому

    Thank you

  • @GOODBOY-vt1cf
    @GOODBOY-vt1cf 4 роки тому

    thank you so much

  • @rotnakleugim
    @rotnakleugim 6 років тому

    what software is used for visualizing transformations?

  • @pb48711
    @pb48711 4 роки тому

    Shouldn't the first row of the matrix read " 2 1" and the second row read "-3 1". I am confused with why you conflated the x and y coordinates.

    • @isavenewspapers8890
      @isavenewspapers8890 9 місяців тому

      The landing spots for the basis vectors go in the columns, not in the rows.

  • @myelinsheathxd
    @myelinsheathxd 3 роки тому

    THX!

  • @sidaliu8989
    @sidaliu8989 6 років тому

    Does anyone have the URL of playlist of this whole series? Thanks a lot.

  • @kutuboxbayzan5967
    @kutuboxbayzan5967 3 роки тому

    He began to use Manim Cast

  • @user-pb4jg2dh4w
    @user-pb4jg2dh4w 4 роки тому

    what should I say.. god bless you

  • @eudemathematicaimmaths9264
    @eudemathematicaimmaths9264 5 років тому +1

    Hm have a further nice journey. Tnx

  • @mkhex87
    @mkhex87 4 роки тому +1

    Isnt this just the Gradient transpose?

    • @mkhex87
      @mkhex87 4 роки тому

      With rows for conponent functions?

  • @leelomchen3119
    @leelomchen3119 2 роки тому +1

    молодец, Я вас люблю

  • @particleonazock2246
    @particleonazock2246 3 роки тому +1

    Jacobean was from the reign of King James.

  • @cashphattichaddi
    @cashphattichaddi 7 років тому +5

    Dope!

  • @CycWins
    @CycWins 7 років тому +6

    Nice video, but did you ask 3Blue1Brown permission to use his animations?

    • @aeroscience9834
      @aeroscience9834 7 років тому +18

      That is 3blue1brown

    • @romanemul1
      @romanemul1 7 років тому +1

      he won a contest of a khan ac. so yes. These lectures were made specially for K.A.

    • @mjtsquared
      @mjtsquared 7 років тому +1

      Be he IS 3Blue1Brown!

  • @gopalakrishnamraju9321
    @gopalakrishnamraju9321 5 років тому

    Why 3blue... Is here?

  • @roonilwazlib8137
    @roonilwazlib8137 4 роки тому

    Ayyy its grant sanderson!!!

  • @hussainbhavnagarwala2596
    @hussainbhavnagarwala2596 2 роки тому

    sounds like grant from 3b1b :D

  • @isaacliu896
    @isaacliu896 6 років тому

    Really better if you understand the linear algebra... But fair job anyway

  • @afterbunny257
    @afterbunny257 6 років тому

    3 Blue 1 Brown guy, yes yes yes!!!!!!!!!!!!!

  • @EggPuffsEdge
    @EggPuffsEdge 5 років тому

    Grant I find you

  • @DeisonPreve
    @DeisonPreve 7 років тому

    cool

  • @kina4288
    @kina4288 3 роки тому +1

    dont know why people shower accolade on your explanation, it is messy and confusing.

  • @connorshea9085
    @connorshea9085 3 роки тому

    69th video nice

  • @user-pb4jg2dh4w
    @user-pb4jg2dh4w 4 роки тому

    wwoooooooowwwwwwww

  • @johndesmond1260
    @johndesmond1260 6 років тому

    I have watched over 100 Khan videos and this these are the first I have disliked. Using the 2 by 1 x, y matrix after the conversion matrix, is very confusing. It makes sense when you multiply by the basis vectors. Also flying the x y matrix to the left of the conversion matrix is really confusing.

  • @rickymishra2915
    @rickymishra2915 Рік тому

    🙏 Nothing Special..? 🪔