Solving ALL integrals from the 2025 MIT Integration Bee Finals

Поділитися
Вставка
  • Опубліковано 29 січ 2025

КОМЕНТАРІ • 70

  • @maths_505
    @maths_505  4 дні тому +24

    NOTE: I made a mistake writing integral 3; the floor(x) is on the golden ratio inside the "outer" floor function.

  • @Arkanda003
    @Arkanda003 4 дні тому +19

    You are killing those integrals! you've upgraded from integration bee to integration WASP. Amazing work

  • @bixxuxboxplayz4986
    @bixxuxboxplayz4986 4 дні тому +21

    13:51 the part where he does mit level antiderivatives, solves infinite series but struggles with the most basic arithmetic is so relateble

    • @maths_505
      @maths_505  3 дні тому +7

      I'm just glad I made it out alive

    • @bixxuxboxplayz4986
      @bixxuxboxplayz4986 3 дні тому +3

      My favourite math creator has replied to my comment, now I can live my life in peace

    • @maths_505
      @maths_505  3 дні тому +2

      @@bixxuxboxplayz4986 I try to reply to everyone. Terribly sorry in case I missed any of your previous ones.

  • @r.maelstrom4810
    @r.maelstrom4810 4 дні тому +4

    max(2sinx, 2cos(2x)-1)^2 * min(sin(2x), cos(3x))^2 = max(2sinx, 2cos(2x)-1)^2 * min(2(sinx)(cosx), (2cos(2x)-1)cosx)^2, where cos(3x) = 4cos^3(x)-3cos(x) = cos(x) (4cos^2(x) - 3) = cos(x)(2cos(2x)-1) [as you found at 21:24 (before being erased)].
    You now can leave that cos(x) factor out off the min(-,-), resulting: max(2sinx, 2cos(2x)-1)^2 * min(2sinx, (2cos(2x)-1)^2 * (cosx)^2. Now observe that max(_,_) and min(_,_) have the same expressions, so the max and min are irrelevant. Therefore you have, finally:
    Integral from 0 to Pi of 4sin^2(x)*(2cos(2x)-1)^2*cos^2(x)dx = Integral from 0 to Pi of 4sin^2(x)*(4cos^2(x)-3)^2*cos^2(x)dx = Integral from 0 to Pi of 4sin^2(x)*((4cos^3(x)-3cos(x))/cos(x))^2*cos^2(x)dx = Integral from 0 to Pi of 4sin^2(x)*((cos(3x)/cos(x))^2*cos^2(x)dx = Integral from 0 to Pi of 4sin^2(x)*((cos(3x))^2*dx = Integral from 0 to Pi of (sin(4x) - sin(2x))^2*dx. Where in the last equality we used the product to sum formula sin(A)cos(B).
    Now we have an easy integral: Integral from 0 to Pi of (sin(4x) - sin(2x))^2*dx = Integral from 0 to Pi of (sin^2(4x) + sin^2(2x) - 2sin(4x)sin(2x)dx = Pi.

  • @iddomargalit-friedman3897
    @iddomargalit-friedman3897 4 дні тому +2

    Smart solution for the forth one:
    Basically it's symmetric around π/2, you divide it then transform to π/2-x, then take sin(x) out of the right side
    Then you left with sin^2(x) times the product of min and max of the same thing, which is just their product
    From there it's trivial
    You get to
    Sin(2x)*(1+2cos(2x)) all square
    You transform to 2x
    Which cancels the 2 factor from the initial separation and gets
    (sin(x)+sin(2x))^2 from 0 to π
    You separate, and get (sinx+sin2x)^2+(sinx-sin2x)^2
    Which is 2sin^2(x) + 2sin^2(2x) from 0 to π/2
    The latter of which we transform then split again to get 2sin^2(x) as well
    So we have 4*sin^2(x) from 0 to π/2
    Transform, add and divide by two, then integrate
    We get 2*π/2=π

    • @krishgarg2806
      @krishgarg2806 День тому

      can you refer some source for the fact used that min*max is just the product?

  • @venkatamarutiramtarigoppul2078
    @venkatamarutiramtarigoppul2078 4 дні тому +5

    18:10 well consider the following if f and g are functions in x and for any positive number k , k*max(f/k,g/k) =max(f,g) . Now just consider the following :
    |Cos3x/cosx| = |4cos^3(x)-3|=|2cos2x-1|,|sin2x/cosx| = |2sinx | , irrespective of what you do |cosx | is always positive . So the integrand simplifies to (1/cos^2(x))*max^2(sin2x,|cos3x|*min^2(sin2x,|cos3x|) . So just the max and min vanishes leaving the integrand with ( 2sinxcos3x)^2 . Now it is an easy trig intgral leaving us with pi

  • @balubaluhehe2002
    @balubaluhehe2002 4 дні тому +6

    it's fascinating to see that the golden ratio has fibonacci-like properties, e.g. the nth power is equal to the (n-1)st plus the (n-2)nd power which is like a recursive property

    • @maths_505
      @maths_505  4 дні тому +4

      @@balubaluhehe2002 indeed

  • @Integralysis
    @Integralysis 4 дні тому +1

    Great work, Kamaal; you are insane!

  • @sidimohamedbenelmalih7133
    @sidimohamedbenelmalih7133 4 дні тому +6

    Floor function of phi then raised to the power of floor function n

    • @maths_505
      @maths_505  4 дні тому +2

      Yeah I fixed it a few moments later😂

  • @musicburst2513
    @musicburst2513 4 дні тому +15

    15:46 isn’t the exponent outside the floor function of the golden ratio, meaning, in every interval it is just 1 raised to the power of 1. So, the answer is just 10 because of 10 intervals?

    • @maths_505
      @maths_505  4 дні тому +4

      It's actually inside it and I had written the integral in LaTeX incorrectly.

    • @musicburst2513
      @musicburst2513 4 дні тому

      @@maths_505 Understood. On an unrelated topic, do you do programming? I just started at uni after having a bio major in high school. People say programming is just maths but I struggle with it though I'm good at maths. I just wanted to hear another math person's perspective.

    • @maths_505
      @maths_505  4 дні тому +1

      @musicburst2513 yeah I code in python but I've rarely ever thought of it as math. Programming in c++ felt more like a math problem tbh because there was planning and structure so coding often felt like writing a solution development. My work in python however is just alot of libraries, modules and chat gpt 😂

    • @suryamgangwal8315
      @suryamgangwal8315 4 дні тому

      ​@musicburst2513 What I do while programming in Python is write the algorithm of the code, then write it in syntax. Python is actually very simple as long as you know the syntax

  • @元兒醬
    @元兒醬 4 дні тому +5

    14:06 it should be 2/3*Pi^2-4-25/12

  • @Leonhardeuler2219
    @Leonhardeuler2219 3 дні тому

    I'm training fir this exam since kast year but i miss it, see you doing helped me to stat focus , so thanks for work !

  • @AliAujla92
    @AliAujla92 4 дні тому +1

    ooh my god! Patience really worth it😱😱

  • @dp_maths_world
    @dp_maths_world 4 дні тому +3

    Thank you for the support you given me on instagram sir. This year's integration bee had been difficult than that of pervious years.

    • @maths_505
      @maths_505  4 дні тому +2

      @@dp_maths_world I honestly think 2023 was the toughest one

  • @元兒醬
    @元兒醬 3 дні тому +2

    23:50 Since f-g >0 then f>g but f = (2cos2x-1)^2 , but you wrote 4(sinx)^2
    and (sin2x)^2 < (cos3x)^2 but you wrote (cos3x)^2
    I've check the integral of 0 to Pi of (2cos2x-1)^2*(sin2x)^2 dx
    and it equals to Pi, Am I wrong or ..........................

  • @kavimahajan8412
    @kavimahajan8412 4 дні тому +1

    And the tradition continues

  • @kingarth0r
    @kingarth0r 3 дні тому +2

    For problem 1 wouldnt it be easier to just use arctanh or is that not allowed?

    • @maths_505
      @maths_505  3 дні тому +1

      Yes that can be used to skip a couple steps

  • @Akamaikai0923
    @Akamaikai0923 4 дні тому +6

    am i crazy or at the end of #2 is -4 + 25/12 supposed to be -23/12 and not -73/12

    • @nicolasferraro4632
      @nicolasferraro4632 4 дні тому

      It's supposed to be - 4 - 25/12, so you do end up with -73/12.

    • @Akamaikai0923
      @Akamaikai0923 4 дні тому +1

      @nicolasferraro4632 so there's a plus when there should've been a minus?

    • @bennetdiesperger4080
      @bennetdiesperger4080 4 дні тому

      He messed up the partial fraction decomposition at 10:33 since the correct factors are (n-1) and (n-5) and not (n+1) and (n+5).

    • @maths_505
      @maths_505  4 дні тому +3

      Yeah homie I basically missed a negative but kept winging it💀
      And no that factorisation doesn't work, just multiply the terms and you'll get a -6n instead of 6n

    • @nicolasferraro4632
      @nicolasferraro4632 4 дні тому

      @@Akamaikai0923 yeah, he just switched them up at 14:02.

  • @zachariastsampasidis8880
    @zachariastsampasidis8880 3 дні тому

    You could invoke the Lucas sequence for the golden ratio integral

  • @r.maelstrom4810
    @r.maelstrom4810 4 дні тому +1

    For max(4sin^2(x), (2cos2x-1)^2), g-f = 16sin^4(x) - 12sin^2(x) +1 varies between -1 and 1 in [0, pi] and so happens for min(sin^2(2x), cos^2(3x)) where g-f = 16cos^6(x)-20cos^4(x)+5cos^2(x) varies between -1 and 1.
    I don't know what are you doing, sincerelly, at that step.

    • @maths_505
      @maths_505  3 дні тому

      Those are all even powers so we don't get the -1

    • @andresberrios7085
      @andresberrios7085 16 годин тому

      ​@@maths_505i don't get it too, if you grafh 16sin⁴x - 12sin²x + 1 you can have negative values, for ex: x = π/4. would be -1, just because they are even exponentials doesnt mean that it's always gonna be positive so i'm still confused about that step

  • @Rando2101
    @Rando2101 4 дні тому

    Understandable, have a great day

  • @mufioooo
    @mufioooo 4 дні тому +1

    uh oh 28:42 should've been -4y+4 not +1 basic arithmetic lowk feeling harder than the integrals😭😭😭😭

  • @quiversky4292
    @quiversky4292 4 дні тому

    You probably already found this out or someone else mentioned it but in problem 2, -48/12 + 25/12 is -23/12

  • @Bbbbbx
    @Bbbbbx 4 дні тому

    13:36 i love the self encouragement lol

  • @syndrrgd812
    @syndrrgd812 4 дні тому +1

    Shouldn't it be int[0,10](floor(phi)^floor(x))dx? So then because phi is ~1.6... floor(phi) is just 1, and then 1^x is just 1, so its int[0,10]dx which is just 10????

    • @maths_505
      @maths_505  4 дні тому +2

      No it turns out I wrote the integral wrong in LaTeX

  • @sundaresanabishek5127
    @sundaresanabishek5127 4 дні тому +1

    My favourite person since 2024❤

  • @flamewings3224
    @flamewings3224 4 дні тому

    9:06 am I crazy? But the derivative of 1/(u^2 + 1 + u) is equal to (-2u -1)/(u^2 + 1 + u)^2 and that is not what it was 1 step before…

    • @r.maelstrom4810
      @r.maelstrom4810 4 дні тому

      The second u is not a u, it's a n (a constant).

  • @mathscribbles
    @mathscribbles 3 дні тому

    Wow. Just wow

    • @maths_505
      @maths_505  2 дні тому

      @@mathscribbles thanks mate

  • @sinekavi
    @sinekavi 4 дні тому

    Only the first one was easy.......got the idea easily........the other ones were untouchable

  • @samirhaque99
    @samirhaque99 4 дні тому

    Where's Cleo when you need her?

  • @CM63_France
    @CM63_France 2 дні тому

    Hi,
    Terribly sorry about that : I lost the timing I did yesterday 🤥I thought I posted it but no 😔.
    But I liked the video, as usual.🙂

  • @aayush554
    @aayush554 4 дні тому

    ahh shittttt here we go again

  • @Christopher-e7o
    @Christopher-e7o 4 дні тому

    X,2x+5=8

  • @Chrismay-qp4xj
    @Chrismay-qp4xj 16 годин тому

    I don't understand how anyone can enjoy this and I'm studying physics 😅

  • @belartemiy
    @belartemiy 4 дні тому

    офигительно круто!

  • @bennetdiesperger4080
    @bennetdiesperger4080 4 дні тому

    At 10:33 you messed up the factorisation n²+6n+5=(n-5)(n-1)≠(n+5)(n+1)

    • @maths_505
      @maths_505  4 дні тому

      @bennetdiesperger4080 aight my math's bad but I do know that what you wrote has a -6n 💀

  • @nicolasgobert8324
    @nicolasgobert8324 4 дні тому

    Okay cool ❤

  • @swim2912
    @swim2912 2 дні тому

    oookay cool

  • @SammyBaunoch
    @SammyBaunoch 4 дні тому

    Lfg!!!